Методом импульсного рентгеновского просвечивания изучена динамика перемещения частиц вещества внутри горящих образцов, дающих твердые продукты горения. В экспериментах использованы образцы из смеси Ti + С + 20% TiC, внутри которых размещали метки в виде полосок из смеси Zr + WO3 или порошка тантала. Образцы сжигали в полузамкнутой жесткой оболочке с выходом примесных газов через шлаки. Установлено, что сразу за фронтом горения начинается движение частиц продуктов сгорания в направлении, противоположном направлению движения фронта горения. Скорость частиц в центральной зоне образца достигает значений, сравнимых со скоростью горения образцов ∼ 20 мм/с), в то время как на периферии скорость движения этих частиц близка к нулю.
Рассматривается класс твердотопливных элементов, позволяющих осуществить такое регулирование поверхности горения твердотопливных элементов в зависимости от величины сгоревшего свода, при котором, эта зависимость может быть не только линейной, как, например, для цилиндров внутреннего горения, или квадратичной, как для сферических элементов горения, но и любой требуемой степени прогрессивности. Приведены метод решения задачи и результаты расчетов.
Разработаны новая комплексная физико-математическая модель, численный алгоритм и вычислительная программа для расчета динамики процессов шлакования и термохимического разрушения углепластиковых теплозащитных материалов многосоставных стенок в дозвуковом высокотемпературном двухфазном потоке при инерционном осаждении полидисперсных жидких частиц оксидов металлов в циклах нагрева и охлаждения (последействия). Представлены результаты численного исследования теплового и химического воздействия осаждающихся инерционно жидких частиц оксида алюминия на параметры прогрева и уноса массы типичного термореактивного прессованного углепластика в одном цикле нагрева и охлаждения двусоставной стенки канала энергетической установки.
Рассмотрено явление столкновения детонационных волн на поверхности алюминиевого и медного корпусов. Показано, что в первом случае формируется кумулятивная струя, а во втором – сочетание кумулятивной и «трехударной« струй. Предложены экспериментально отработанные способы устранения струй.
Разработан простой метод снижения температуры образца при обработке твердых пористых веществ ударной волной. Сущность метода заключается в заполнении образца жидким парафином. Результаты экспериментов показывают, что в результате обработки анатаза, заполненного жидким парафином, образуется фаза высокого давления β-TiO2, а без парафина – рутил.
В работе предложена двухжидкостная модель плоской стационарной ударной волны в проводнике и рассмотрена ее токовая структура. Для идеального гидродинамического разрыва показано, что распределение полей и токов состоит из довольно широкой диффузионной зоны в не возмущенном волной материале и из мелкомасштабной зоны высокочастотных осцилляций, связанных с релаксацией плотности электронов к плотности ионов. Рассмотрена структура осцилляционной зоны б зависимости от свойств материала и возможного изменения электропроводности в ударной волне. Вычислено время установления равновесной плотности зарядов. Показано, что для проводящих материалов генерируемый волной ток определяется сжимаемостью и практически весь сосредоточен в диффузионной зоне. Ширина этой зоны определяется электропроводностью материала в исходном состоянии и никак не зависит от свойств материала за фронтом волны.
Дан анализ электромагнитных процессов в системе шунт –вещество в случае изменения проводимости ударно-сжатого вещества от времени. Такая система моделирует измерительную ячейку для исследования перехода диэлектрик – металл в ударной волне. Электромагнитный отклик системы определяется величиной проводимости и характером ее изменения за ударным фронтом. В зависимости от профиля проводимости распределение тока в системе имеет различный вид. Постоянство или рост проводимости приводят к монотонному уменьшению плотности тока в пространстве при удалении от свободной границы шунта. В случае падения проводимости за ударным фронтом в системе образуются локальные максимумы плотности тока. Выполненный анализ может быть полезен для интерпретации электромагнитных измерений в ударных волнах. По виду зависимостей электрического поля от времени для двух поверхностей шунта можно качественно судить о характере изменения проводимости в исследуемом веществе.
В работе применена теория фракталов для описания структуры гетерогенных конденсированных систем (ГКС) и проведено исследование особенностей протекания процессов энерговыделения в зависимости от параметров исходной структуры. Изучена микроструктура ГКС и динамика ее изменения как функция соотношения и свойств компонентов. Показано, что частицы компонентов образуют фрактальные структуры, характеризующиеся нецелой размерностью. Получены изображения микроструктуры, отражающие наличие геометрического фазового перехода фрактальный кластер – перколяционный кластер. Определены закономерности распространения фронта реакции. Получено, что концентрационные пределы энерговыделения и горения связаны с эволюцией фрактальных структур и формированием (разрушением) непрерывной поверхности реакции. Измерена электропроводность исходных композиций как индикатор образования фрактальных структур той или иной конфигурации. Проанализирован комплекс электро- и теплофизических свойств образцов, а также параметры процессов энерговыделения (горения). Системы в различных процессах обнаруживают подобное поведение. Вблизи критической точки зависимость изучаемых параметров от концентрации носит степенной характер. Величина показателя степени близка к определяемой теорией перколяции. Разработан и реализован алгоритм расчета поверхности контакта компонентов. Результаты расчетов позволяют выделить «базовый блок», влияющий на скорость горения, а также определить критические концентрации компонентов. Изучение ГКС с позиций нового направления в геометрии неупорядоченных систем – теории фракталов – является перспективным для «свертки» накопленного литературного экспериментального материала и для прогнозирования параметров энерговыделения ГКС при изменении параметров структуры.
Изучены закономерности и механизм горения системы NiO—А1 под давлением газа. Показано, что давление подавляет разброс исходной смеси и позволяет получать конечные продукты горения в литом виде. Определены химический состав, пределы горения и область получения литых интерметаллидов по соотношению реагентов.
Инертная добавка, газифицируясъ в волне самораспространяющегося высокотемпературного синтеза, образует вместе с жидкими компонентами (реагентами или продуктами реакции) пену. Изучена структура такой волны. Рассмотрена газификация в зоне реакции и в зоне прогрева. В последнем случае волна подвержена своеобразной неустойчивости.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее