В. И. Быков, Е. П. Волокитин*, С. А. Тресков*
"Вычислительный центр СО РАН, 660036 Красноярск *Институт математики СО РАН, 630090 Новосибирск"
Страницы: 61-69
На основе методов теории бифуркаций проведен параметрический анализ модели Зельдовича–Семенова, описывающей динамику одной экзотермической реакции в реакторе идеального смешения. В процессе анализа получены бифуркационные диаграммы, которые не были обнаружены в предыдущих исследованиях.
Экспериментально исследовано воздействие малых добавок инертных и реагирующих примесей (типа перекиси водорода, продуктов ее разложения, СО2 и др.) на воспламенение и горение водорода в высокотемпературном сверхзвуковом воздушном потоке. Показано, что введение примесей непосредственно в топливо не оказывает значительного влияния на горение Н2, в то время как впрыск перекиси водорода либо небольших добавок чистого водорода перед соплом резко сокращает время задержки воспламенения, что указывает на активное влияние продуктов реакции. Сравнительные эксперименты с инертными добавками показали, что их воздействие проявляется только через снижение температуры воздушного потока.
Экспериментально исследованы некоторые закономерности распространения пламени по газовой смеси с запредельно низким значением энтальпии в испарительно-диффузионном режиме в различных пористых средах. Показано, что волна горения в высокопористой среде, смоченной н-октаном, распространяется стационарно со скоростями 3÷10 см/с. Исследовано влияние объемной теплоемкости и теплопроводности материала пористой среды на скорость и предельные характеристики распространения пламени как в режиме высокой скорости для высокоэнтальпийных газовых смесей, так и в низкоскоростном режиме для низкоэнтальпийных газовых смесей. Рассмотрены условия существования испарительно-диффузионного режима.
Предложена точечная математическая модель для описания воспламенения композитных аэровзвесей: мелких частиц алюминия, капель углеводородного топлива и газообразного окислителя. Учитываются обобщенная бруттореакция горения паров углеводородов, различие температур компонентов и нарастание окисной пленки на металлической частице. В частном случае смеси, состоящей из капель углеводородного топлива, проведена адаптация модели к экспериментальным данным по зависимости времени задержки воспламенения от температуры окружающей среды. В случае композитной смеси, содержащей как твердые частицы, так и капли, показано, что время индукции «теплового взрыва» в условиях избытка окислителя зависит в большей степени от концентрации и размеров капель горючего, чем от количества частиц алюминия.
Рассмотрена математическая модель детонации вакуум-взвесей летучих вторичных взрывчатых веществ, учитывающая неравномерное распределение температуры внутри частиц при их обтекании потоком газообразных продуктов. Исследована безударная структура стационарной детонации взвеси частиц гексогена в вакууме. Рассчитаны параметры двухфазного потока в зоне реакции и ее длина в зависимости от массовой концентрации и размеров частиц гексогена.
В рамках модели Иорданского–Когарко с мгновенным энерговыделением на фронте детонации изучены особенности формирования и распространения самоподдерживающихся волн в жидкости, содержащей пузырьки как химически активного, так и инертного газа. Сформулировано правило отбора скорости детонации в пузырьковой среде с дискретным распределением пузырьков по размерам.
Экспериментально исследованы детонационные волны в полидисперсных пузырьковых средах. Получены данные о критических условиях инициирования, структуре и свойствах волн детонации. Проведено сопоставление характеристик детонационных волн в поли- и монодисперсных средах. Изучено поведение пузырьков газа различного диаметра в волне детонации.
Осуществлено непрерывное детонационное сжигание топливно-воздушных смесей. В камере дискообразной формы с плоскорадиальным завихренным течением, направленным от периферии к центральному выходному отверстию, возбуждали вращающуюся детонационную волну, в которой сжигались смешанные с воздухом водород и метан, а также распылы жидких горючих: керосина и дизельного топлива. Ранее аналогичный процесс удавалось получить только при использовании в качестве окислителя кислорода.
Экспериментально исследовались профили напряжения при распространении ударной волны в однонаправленном композите в случае, когда нормаль к поверхности фронта волны направлена под углом θ к армирующему волокну. При θ = 5 и 15° зарегистрирован упругий предвестник, за которым распространяется ударный скачок. В случае θ = 45° упругий предвестник трансформируется в пластическую волну с размытым фронтом, а при θ = 90° зарегистрирована одиночная ударная волна. Результаты измерений показывают, что напряжение в точке перехода в текучее состояние зависит от взаимной ориентации волокна и направления движения ударной волны.
В. В. Сильвестров, А. В. Пластинин, И. В. Яковлев, В. В. Пай
"Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск"
Страницы: 139-151
Приведены результаты исследования высокоскоростного удара по модельным дисперсно-упрочненным композитам, состоящим из эпоксидной или алюминиевой матрицы с включениями частиц металла (Al, Pb) или керамики (SiO2). Цель исследования – поиск материалов, обладающих более высоким сопротивлением к внедрению высокоскоростной частицы по сравнению с материалом отдельных компонентов. Это сопротивление характеризуется отношением глубины кратера в достаточно толстой мишени к диаметру сферического ударника. Для двух исследованных композитов показано, что при ударе стальной частицей со скоростью от 3 до 11 км/с глубина кратера примерно на величину одного диаметра ударяющей частицы меньше, чем глубина кратеров для мишеней из свинца или алюминия.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее