Т. П. Ивлева
Институт структурной макрокинетики и проблем материаловедения РАН, 142432 Черноголовка, anja@ism.ac.ru
Ключевые слова: фронтальные процессы, нестационарное горение, трехмерные спиновые волны.
Страницы: 41-49
Численными методами исследовано распространение одноочаговой спиновой волны по образцу цилиндрической формы с соосным внутренним каналом в предположении отсутствия теплоотвода от внешней поверхности образца и от поверхности канала. Показано, как меняются характеристики спиновой волны (максимальной температуры, продольной и окружной скоростей, шага “винта” и времени оборота очага вокруг оси образца) для образца данного размера при изменении радиуса канала, для образцов различного размера при фиксированном радиусе канала и для образцов с постоянной толщиной стенки.
А. Г. Князева, С. Н. Сорокова
Институт физики прочности и материаловедения СО РАН, 634021 Томск, anna@ms.tsc.ru, s_sorokova@mail.ru
Ключевые слова: волна горения, устойчивость, метод малых возмущений, время релаксации вязких напряжений
Страницы: 50-60
Сформулирована задача об устойчивости фронта превращения в вязкоупругой среде. Исследование устойчивости проведено методом малых возмущений. Найдены нелинейные уравнения для декрементов затухания и комплексной частоты. Проанализированы различные частные случаи. Показано существенное влияние времени релаксации вязких напряжений на верхний и нижний пределы устойчивого горения, как для низкоскоростного, так и для высокоскоростного режимов.
А. С. Рогачев1, Н. А. Кочетов1, В. В. Курбаткина2, Е. А. Левашов2, П. C. Гринчук3, О. С. Рабинович3, Н. В. Сачкова1, Ф. Бернар4 1Институт структурной макрокинетики и проблем материаловедения РАН, 142432 Черноголовка, rogachev@ism.ac.ru 2Московский институт стали и сплавов (технологический университет), 119049 Москва 3Институт тепло- и массообмена им. А. В. Лыкова НАН Беларуси, 220072 Минск, Беларусь, 4Университет Бургундии, 21078 Дижон, Франция
Ключевые слова: механическая активация, безгазовое горение, микроструктура, микрогетерогенная модель, ячеистая структура
Страницы: 61-70
Проведено экспериментальное исследование безгазового горения механически активированной смеси Ni + Al, а также сопоставление с характеристиками горения неактивированной смеси Ni + Al. Показано, что в процессе механической активации смеси Ni + Al образуются слоистые конгломераты, состоящие из множества слоев исходных компонентов, в результате чего микроструктура среды становится максимально приближенной к ячеистой структуре, лежащей в основе современных микрогетерогенных моделей безгазового горения. Установлена связь локальных (микроскопических) и глобальных (макроскопических) параметров безгазового горения. Модификация микроструктуры исходной среды путем механической активации позволяет получать продукты, микроструктура которых значительно отличается от микроструктуры продуктов, полученных из неактивированных смесей.
В. Ф. Проскудин
РФЯЦ, ВНИИ экспериментальной физики, 607188 Саров, proskudin@dep19.vniief.ru
Ключевые слова: твердопламенное горение, электродвижущая сила горения, конденсированные системы, электропроводность в волне горения
Страницы: 71-77
На примере конденсированных систем 3Zr + 2WO3 и Al + Ni показано, что величина ЭДС твердопламенного горения, измеряемая зондовым методом, в насыпных системах значительно больше, чем в тех же системах, находящихся в прессованном виде. Дано объяснение этого явления, основанное на различии электропроводности в различных зонах волны горения насыпных и прессованных конденсированных систем.
О. Г. Глотов
Институт химической кинетики и горения СО РАН, 630090 Новосибирск glotov@ns.kinetics.nsc.ru
Ключевые слова: алюминизированное топливо, октоген, гексоген, агломерация, конденсированные продукты горения, полнота сгорания алюминия, эволюция агломератов
Страницы: 78-92
Методом отбора исследованы конденсированные продукты горения двух модельных топлив, состоящих из перхлората аммония, алюминия, нитрамина и энергетического связующего. Одно топливо содержало октоген с размером частиц D10 ≈ 490 мкм, другое — гексоген с размером D10 ≈ 380 мкм. Определен гранулометрический состав и содержание металлического алюминия в частицах конденсированных продуктов горения с размерами от 1.2 мкм до максимального в диапазоне давлений 0.1 ÷ 6.5 МПа при вариации местоположения гашения частиц от поверхности горения до 100 мм. Для агломератов получены зависимости неполноты сгорания алюминия от времени пребывания в факеле образца топлива. Топливо с гексогеном характеризуется более сильной агломерацией, чем топливо с октогеном, — размер и масса агломератов больше, выгорание алюминия идет медленнее. Определено отношение массы оксида, аккумулированного на агломератах, к общей массе образованного оксида. Показано, что размер агломераа — основной физический фактор, управляющий накоплением оксида на горящем агломерате.
С. К. Асланов
Одесский национальный университет им. И. И. Мечникова, 65026 Одесса, Украина, aslanov@onu.edu.ua
Ключевые слова: взрыв, ударная волна, объемный заряд, метод сращивания, асимптотическое представление
Страницы: 93-99
Математически исследовано поведение ударной волны, образованной взрывом сферического объема, на всем участке ее распространения. В основу метода расчета положены аналитические результаты изучения подобной проблемы применительно к точечному взрыву с учетом противодавления, а также теория асимптотически эквивалентного точечного взрыва. Используется метод сращивания асимптотического решения газодинамических уравнений вдали от места взрыва с начальными условиями возникновения ударной волны при распаде детонационного скачка, выходящего на границу взрывающегося объема. Пространственное распределение давления в ударном фронте найдено для газообразных горючих систем и твердых взрывчатых веществ. Полученные теоретические результаты количественно согласуются с известными экспериментальными измерениями.
А. П. Голубь
Институт динамики геосфер РАН, 119334 Москва, golub'@idg.chph.ras.ru
Ключевые слова: шар взрыва, теплый слой, ультрафиолетовое и вакуумно-ультрафиолетовое излучение, испарение, вспышка поглощения
Страницы: 100-106
С помощью математического моделирования демонстрируется принципиальная возможность образования у поверхности земли теплого слоя (метрового слоя эрозионных паров и воздуха с температурами несколько тысяч градусов и плотностью в 20 ÷ 50 раз меньше нормальной плотности воздуха) под действием распространяющегося на большие расстояния излучения огненного шара сильного взрыва при умеренной плотности потока лучистой энергии порядка 1 ГВт/м2 за время порядка 10 мс. Результаты численного исследования согласуются с данными наблюдений эффекта теплого слоя при испытаниях ядерного оружия.
Ф. А. Быковский, С. А. Ждан, Е. Ф. Ведерников
Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск, bykovs@hydro.nsc.ru
Ключевые слова: непрерывная спиновая детонация, топливно-воздушные смеси, камера сгорания, поперечные детонационные волны, структура течения
Страницы: 107-115
Приведены результаты экспериментального исследования управляемой непрерывной спиновой детонации ацетиленовоздушных и водородовоздушных смесей, а также смесей пропан — воздух — кислород и керосин — воздух — кислород в проточной цилиндрической камере диаметром 30.6 см. Рассмотрены структура течения, условия, свойства и области существования непрерывной детонации.
В. В. Сильвестров
Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск, silver@hydro.nsc.ru
Ключевые слова: ВВ 2-го типа, скорость детонации, плотность, эмульсионное взрывчатое вещество
Страницы: 116-124
Немонотонная зависимость скорости детонации цилиндрического заряда от плотности для взрывчатых веществ 2-го типа обусловлена влиянием конечного диаметра заряда и связана с увеличением ширины зоны реакции при уменьшении пористости взрывчатых веществ.
М. Ф. Гогуля, М. Н. Махов, М. А. Бражников, А. Ю. Долгобородов
Институт химической физики им. Н. Н. Семенова РАН, 119991 Москва, gogul@polymer.chph.ras.ru
Ключевые слова: скорость детонации, бис(2,2,2-тринитроэтил)нитрамин, алюминий, фазовое состояние Al2O3
Страницы: 125-130
Экспериментально исследовано влияние добавки Al на скорость детонации БТНЭН. Показано, что зависимость скорости детонации БТНЭН от начальной плотности близка к линейной, а для смеси БТНЭН/Al (75/25) характерно увеличение наклона зависимости с повышением плотности. Добавление Al снижает скорость детонации БТНЭН. Определена область плотностей с максимальным снижением скорости. Сравнение экспериментальных скоростей детонации смеси БТНЭН/Al с опубликованными результатами расчетов, проведенных с учетом возможности смены фазового состояния Al2O3, показало необходимость совершенствования использованной при расчете термодинамической модели.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее