Проведены исследования гнейсов и гранитоидов из трех глубоких скважин, расположенных в центральной части Непско-Ботуобинской антеклизы Сибирского кратона. На основании U-Pb (LA-ICP-MS) геохронологических исследований циркона было установлено, что возраст гранитоидного протолита амфибол-биотитового гнейса из скв. Даниловская-95 составляет 2254 ± 4 млн лет, возраст гранитоида из скв. Могдинская-11 оценивается как 1972 ± 9 млн лет, а гранитоида из скв. Преображенская-14 как 1981 ± 3 млн лет. Протолит гнейса из скв. Даниловская-95 по составу соответствует гранодиориту, близкому по составу граниту I- типа с высокими содержаниями высокозарядных элементов, характеризуется величиной TNd(DM) = 2.7 млрд лет и может быть образован в результате плавления архейского корового источника в пределах отдельного блока. Гранитоид из скв. Могдинская-11 имеет характеристики, сопоставимые с гранитами I -типа с низкими концентрациями высокозарядных элементов, и обнаруживает величину TNd(DM) = 2.4 млрд лет. Гранитоид скв. Преображенская-14, имеющий TNd(DM) = 2.6 млрд лет, по составу близок гранитам I -типа с высокими концентрациями высокозарядных элементов. Совокупность данных, а также близкие значения возраста (~ 2.0 млрд лет), ранее полученные для гнейсогранитов S -типа одной из скважин Даниловской группы, позволяют допустить, что в центральной части Непско-Ботуобинской антеклизы в интервале 1.97-2.00 млрд лет были сформированы гранитоиды с различными геохимическими характеристиками, что возможно в пределах аккреционного орогена, включающего, судя по изотопным характеристикам, блоки с раннепротерозойской и архейской корой. Изученный район представляет собой фрагмент раннепротерозойского Транссибирского орогенного пояса, разделяющего крупные архейские Тунгусский и Анабарский супертеррейны, а его формирование фиксирует раннюю стадию аккреционных процессов и начало становления структуры Сибирского кратона в интервале 1.95-2.00 млрд лет.
Проведен комплексный анализ новых геолого-геофизических данных, полученных для района дельты р. Лена, с целью выявления структурных взаимоотношений между Сибирским кратоном, Верхоянским складчато-надвиговым поясом и Лаптевоморской рифтовой системой. Основные новые геофизические данные включают результаты магнитотеллурического зондирования (МТЗ) (21 пункт зондирования) и локального сейсмического мониторинга (613 землетрясений в период 2018-2024 гг.). Совместная интерпретация результатов морфоструктурных исследований, данных сейсмической томографии, МТЗ и гравитационных аномалий позволяет сделать следующие выводы. Сейсмическая активность носит мигрирующий характер и приурочена к коровым структурам Верхоянского складчато-надвигового пояса и Южно-Лаптевского рифта. По данным сейсмической томографии, с юго-западной стороны прослеживается наличие двух слоев земной коры. Верхний слой (повышенное отношение vP / vS ) соответствует структурам Верхоянского складчато-надвигового пояса, надвинутым на край Сибирского кратона, на которые наложены структуры Южно-Лаптевского рифта. Кровля нижнего слоя (пониженное vP / vS ) погружается с юго-запада на северо-восток до глубин 15-20 км. Он соответствует докембрийскому кристаллическому фундаменту Сибирского кратона. Такая двухслойная модель коры прослеживается под дельтовыми осадками р. Лена на северо-восток примерно на 30 км, после чего меняется на однослойную с повышенными значениями vP / vS . Данные МТЗ позволяют детализировать структуру верхней части коры и согласуются с наличием Южно-Лаптевского рифта между Булкурским и Быковским разломам, а также с наличием Туматского горста на северо-востоке от Быковского разлома. Современная активность разломов фиксируется субвертикальными низкоомными аномалиями удельных электрических сопротивлений по данным МТЗ (флюидонасыщенные зоны) и зонами концентрации очагов землетрясений по сейсмологическим данным, что наблюдается для Булкурского, Нижнеленского, Быковского и Сардахского разломов.
В.П. Сухоруков1, О.М. Туркина1,2 1Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия svp@igm.nsc.ru 2Новосибирский государственный университет, Новосибирск, Россия
Ключевые слова: U-Pb датирование, циркон, монацит, енисейская серия, Енисейский кряж, Сибирский кратон
Страницы: 1577-1595
Ангаро-Канский блок расположен на юго-западе Сибирской платформы и сложен преимущественно породами канского гранулитового и енисейского метавулканогенно-осадочного комплексов. В работе представлены данные по составу, условиям метаморфизма и возрасту циркона и монацита из гранат-биотитовых сланцев енисейского комплекса. На основании структурных особенностей, геохимических характеристик и широкого возрастного спектра цирконов установлено, что гранат-биотитовые сланцы в составе енисейского метаморфического комплекса образовались в результате одностадийного метаморфизма терригенных пород. PT -параметры метаморфизма гранат-биотитовых сланцев и гранатовых амфиболитов оцениваются около P = 7.2-8.2 кбар, Т = 700-730 °C и близки параметрам метаморфизма метавулканических пород енисейского комплекса в целом. Возраст метаморфической генерации цирконов и монацитов из гранат-биотитовых сланцев в интервале 720-730 млн лет коррелирует с временем неопротерозойского метаморфизма вулканических пород енисейского комплекса. Возрастные спектры палеопротерозойских детритовых цирконов из гранат-биотитовых сланцев характеризуются двумя максимумами: 1.86 и 1.78 млрд лет. Вероятным источником детритовых цирконов были гранулиты канского комплекса, испытавшие два этапа высокоградного метаморфизма на рубежах 1.89-1.85 и 1.8-1.77 млрд лет соответственно. Накопление терригенных осадков было, вероятно, близко по времени к образованию вулканитов енисейского комплекса на рубеже ⁓ 1.74 млрд лет. Предполагается, что большинство осадочных пород енисейской серии формировалось после основных орогенических событий в Ангаро-Канском блоке.
Г.П. Широносова1, В.О. Горюнова1,2, И.Р. Прокопьев1,2,3 1Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия shiron@igm.nsc.ru 2Новосибирский государственный университет, Новосибирск, Россия 3Тувинский институт комплексного освоения природных ресурсов СО РАН, Кызыл, Россия
Ключевые слова: Редкоземельные элементы, флюорит, карбонатиты, раствор, флюид, кальцит, бастнезит, паризит
Страницы: 1596-1606
Впервые для всего ряда лантаноидов (+Y) проведены термодинамические расчеты по влиянию Са в составе системы на формирование редкоземельной (РЗЭ) минерализации в процессе охлаждения гидротермального флюида от 500 до 100 °C, воздействовавшего на ассоциацию монацита с переменным количеством кальцита. Установлено, что увеличение вводимого в состав системы кальцита и повышение рН раствора приводят к заметным изменениям в равновесной минеральной ассоциации. Увеличение исходного количества кальцита в составе системы сопровождается повышением устойчивости паризита и РЗЭ-содержащего флюорита. Переход от кислых к близнейтральным условиям расширяет интервал образования паризита с одновременным уменьшением количества равновесного бастнезита. При кислых флюидах (рН 3, 4) РЗЭ-содержащий флюорит образуется в низкотемпературных условиях, тогда как при рН = 6.6 он может быть устойчивым в интервале 400-500 °C. В близнейтральных условиях в равновесной ассоциации появляется остаточный неизрасходованный кальцит. В кислых условиях с увеличением кальцита, введенного в состав системы, растет и концентрация кальция в равновесном флюиде с одновременным возрастанием в нем суммарной равновесной концентрации лантаноидов. Это означает, что обогащенные кальцием кислые флюиды могут способствовать выносу РЗЭ, а обедненные кальцием флюиды, напротив, могут способствовать осаждению лантаноидов, как и увеличение рН рудообразующей среды.
В.И. Малов1,2, В.Д. Страховенко1,2, М.А. Густайтис1,2, Е.А. Овдина1, Г.И. Малов1 1Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия malov@igm.nsc.ru 2Новосибирский государственный университет, Новосибирск, Россия
Ключевые слова: Ртуть, поток ртути, Hg, донные отложения, озера, Алтай
Страницы: 1607-1614
Представлены результаты комплексного исследования содержания ртути в донных отложениях четырех высокогорных озер плато Укок (Республика Алтай, Россия): Зерлюколь-Нур, Красное, Теплый ключ и Аргамджи. Целью исследования являлось количественное определение концентраций ртути и оценка ее потоков в осадках как индикаторов глобального атмосферного загрязнения. Результаты показали, что содержание ртути в осадках варьирует от 28 до 130 нг/г при среднем значении 57.4 ± 21.4 нг/г, что соответствует фоновым уровням для высокогорных озер Северного полушария. В трех озерах выявлены повышенные концентрации ртути в верхних слоях, отражающие постиндустриальное загрязнение, тогда как в оз. Теплый ключ этот тренд не прослеживается, вероятно, из-за термального эндогенного влияния. Скорости осадконакопления составили: в оз. Теплый ключ - 0.18, в оз. Аргамджи - 0.9 см/год; рассчитанные потоки ртути: для оз. Теплый ключ - 3.9, для оз. Аргамджи - 9.1 нг/см2·год, что сопоставимо с уровнями для Южных Гималаев, но ниже значений, зарегистрированных в индустриально активных регионах. Полученные данные указывают на изолированность Укокского плато от прямых источников загрязнения и подчеркивают его значимость как фоново-индикаторной территории для оценки трансграничного переноса ртути. Исследование восполняет дефицит данных о распределении Hg в удаленных высокогорных экосистемах и способствует уточнению глобальных моделей круговорота ртути.
В.А. Конторович
Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН, Новосибирск, Россия kontorovichva@ipgg.sbras.ru
Ключевые слова: Рифтогенез, осадочный бассейн, грабен-рифт, межрифтовые блоки, базальты, нефтегазоносность, Западная Сибирь
Страницы: 1615-1626
Статья посвящена строению, условиям формирования и последующему развитию Колтогорско-Уренгойской рифтовой системы, рассекающей территорию Западной Сибири в меридиональном направлении и имеющей протяженность 1925 км. На базе интерпретации потенциальных полей уточнено строение основных рифтов и оперяющей их системы второстепенных грабенов. Сделан вывод, что раннетриасовый рифтогенез в значительной мере предопределил архитектуру мезозойско-кайнозойского осадочного чехла Западно-Сибирского осадочного бассейна и оказал существенное влияние на его нефтегазоносность. Над основными грабен-рифтами Колтогорско-Уренгойской системы в структурных планах мезозойских реперных уровней был сформирован Колтогорско-Уренгойской мегажелоб - надпорядковая вытянутая в меридиональном направлении линейная депрессия, протягивающаяся через всю Западную Сибирь. В южной части бассейна более интенсивное мезозойско-кайнозойское погружение Колтогорско-Уренгойского и Усть-Тымского грабен-рифтов предопределило формирование в осадочном чехле крупных надрифтовых депрессионных зон Среднепуровского желоба, Колтогорского мегапрогиба, Нюрольской и Усть-Тымской мегавпадин - основных зон нефтеобразования. Над выступами палеозойского фундамента были сформированы положительные структуры I и II порядка - Северный, Нижневартовский, Александровский, Каймысовский своды; Етыпуровский, Вынгапуровский, Средневасюганский и Пудинский мегавалы - основные зоны нефтенакопления. На севере бассейна над межрифтовыми блоками в рельефах меловых горизонтов были сформированы антиклинальные структуры-ловушки, контролирующие апт-альб-сеноманские газовые залежи.
Г.В. АКИМОЧКИНА1, Л.А. СОЛОВЬЕВ1, В.В. ЮМАШЕВ1,2, Е.В. МАЗУРОВА1, Н.П. ФАДЕЕВА1, С.С. ДОБРОСМЫСЛОВ2, Е.В. ФОМЕНКО1 1Красноярский научный центр СО РАН, Институт химии и химической технологии СО РАН, Красноярск, Россия agv3107@mail.ru 2Сибирский федеральный университет, Красноярск, Россия yumashev@icct.ru
Ключевые слова: стеклокерамические материалы, дисперсные микросферы, РМ10, летучая зола, каменный уголь
Страницы: 713-723
В процессе синтеза стеклокерамических материалов выполнено детальное исследование высокотемпературных твердофазных превращений, протекающих в дисперсных микросферах размером меньше 10 мкм (dср = 3 мкм и d99 = 10 мкм), относящихся к взвешенным веществам (PM10) летучих зол от сжигания каменных углей Экибастузского и Кузнецкого угольных бассейнов. Установлено, что при 1100 °C в микросферах PM10 макрокомпонентного состава SiO2-Al2O3-FeO, выделенных в виде узких фракций из летучих зол от сжигания экибастузского угля, наблюдается увеличение содержания фазы муллита (от 17 до 31 мас. %), формируется фаза кристобалита (до 29 мас. %); содержание стеклофазы снижается от 65 до 25 мас. %. В образцах узких фракций микросфер PM10 из летучих зол от сжигания кузнецкого угля кристаллизация стеклофазы при 1100 °C приводит к заметному увеличению концентрации фазы муллита (от 3 до 17 мас. %), формированию фазы кристобалита и анортита (3 и 6 мас. % соответственно); количество стеклофазы уменьшается от 93 до 70 мас. %. Методом прямого спекания на основе дисперсных микросфер РМ10 летучих зол от сжигания каменного угля Кузнецкого бассейна получен хорошо консолидированный композит, который характеризуется низкой пористостью (0.4 %), незначительным водопоглощением (0.2 %) и высокой прочностью (56 МПа). На основе дисперсных микросфер РМ10 летучих зол от сжигания каменного угля Экибастузского бассейна получены высокопористые (открытая пористость 44-52 %) композиты с однородной микропористой структурой, прочностью 20-36 МПа, обладающие жидкостной проницаемостью до 478 л/(м2⋅ч⋅бар) и коэффициентом задержания дисперсных микропримесей 0.98-0.99. Кислотостойкость полученных стеклокерамических материалов составляет 97-100 %.
Описана методика количественного определения F, P, S, V, Cr, Co, Ni, Cu, Zn, As, Pb, Th и U в углях и почвах, содержащих уголь. Для проведения рентгенофлуоресцентного анализа (РФА) использовали рентгеновский волнодисперсионный спектрометр S8 TIGER (Bruker, Германия). Измерения проводили в вакуумном режиме. Высушенные образцы готовили в виде прессованных таблеток-излучателей. Для получения градуировочных характеристик и проведения метрологических исследований выбран набор стандартных образцов (СО) сланцев, золы углей, отложений и почв различного химического состава, а также приготовлены смеси с различным соотношением порошков СО и графита. Соотношения СО и графита определяли в соответствии с данными по содержанию общего углерода в исследуемых объектах, а также с данными по зольности угля. Для учета взаимных влияний элементов использовали способ a-коррекции, вводя в большинстве случаев в качестве влияющих факторов интенсивности флуоресценции элементов, содержащихся в пробах (углерод и др.). Рассчитанные значения пределов обнаружения определяемых элементов варьируют от 0.6 до 20 мг/кг. Для контроля правильности результатов РФА использовали СО сланцев (SGR1 и SDC1), аномального ила (СГХ5) и чернозема (СП1), а также смеси СГХМ3/графит (1 : 4) и ДВТ/графит (1 : 3). С помощью t-критерия получено, что результаты РФА не содержат значимых систематических погрешностей. Методика рентгенофлуоресцентного определения F, P, S, V, Cr, Co, Ni, Cu, Zn, As, Pb, Th и U использована для изучения распределения элементов в образцах фракций каменного угля месторождений Иркутской области и в образцах почв, содержащих эти фракции, которые были отобраны в селитебной зоне Октябрьского района города Иркутска в летний период 2024 года. На основании данных РФА сделаны выводы о влиянии на элементный состав почв многолетнего пребывания в них каменного угля.
С.В. КУДРЯШОВ, А.Ю. РЯБОВ, А.Н. ОЧЕРЕДЬКО
Институт химии нефти СО РАН, Томск, Россия ks@ipc.tsc.ru
Ключевые слова: бензол, прямое окисление, барьерный разряд, фенол, механизм реакции
Страницы: 885-897
Представлены результаты экспериментов по прямому окислению бензола в фенол кислородом и воздухом в барьерном разряде в условиях эффективного удаления продуктов реакции из зоны его действия. В случае окисления бензола кислородом содержание фенола в продуктах достигает ~73 мас. %, в незначительном количестве образуются арендиолы (в сумме ~8 мас. %, в основном гидрохинон). Окисление бензола воздухом приводит к росту содержания фенола в продуктах до ~77 мас. % и снижению содержания двухатомных фенолов до ~3 мас. %. Конверсия бензола за один проход парогазовой смеси через реактор в кислороде достигает 0.5 мас. %, в воздухе - 0.4 мас. %. Прямое окисление бензола в фенол воздухом сопровождается образованием осадка. Изучена структура этого осадка, обсужден механизм его образования. Показано, что формирование осадка при обработке бензола в воздухе вызвано реакциями с участием возбужденных молекул азота. Подробно рассмотрены основные стадии механизма процесса окисления, приводятся результаты расчетов потерь энергии электронов в электронно-молекулярных реакциях, протекающих на стадии разрядного инициирования в барьерном разряде, которые позволяют оценить их вклад в механизм образования промежуточных активных частиц и стабильных молекул, а также направления протекания процесса окисления бензола в плазме барьерного разряда. Показано, что образование фенола происходит в результате прямого взаимодействия молекулы бензола и атомарного кислорода. Продемонстрировано, что окисление бензола в барьерном разряде превосходит некоторые термокаталитические методы по скорости реакции и характеризуется сравнимыми результатами по селективности образования фенола.
Н.С. РИДЕЛЬ1, С.А. КОВАЛЕВА2, Е.Т. ДЕВЯТКИНА1, С.В. ВОСМЕРИКОВ1, Т.М. ВИДЮК1,3, И.Н. БУЗМАКОВ4, А.В. СИВАК4, Т.Ф. ГРИГОРЬЕВА1 1Институт химии твердого тела и механохимии СО РАН, Новосибирск, Россия ridelns@solid.nsc.ru 2Объединенный институт машиностроения НАН Беларуси, Минск, Беларусь svetakov2021@gmail.com 3Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск, Россия tomilka.v@gmail.com 4Научно-исследовательский центр “Топаз”, Москва, Россия i.buzmakov@inenergy.ru
Ключевые слова: механохимический синтез, механически стимулированные реакции, титан, карбид титана, никель, металломатричные композиционные материалы
Страницы: 898-906
Методами рентгенофазового, рентгеноструктурного и микрорентгеноспектрального анализа изучено влияние низкотемпературных эвтектик Ni-Ti на механохимический in situ синтез карбида титана в матрице никеля. При сравнении систем 50 мас. % Ti-(Ti-C) и 50 мас. % Ni-(Ti-C) установлено, что в первом случае индукционный период реакции составляет 4 мин, во втором - синтез идет в режиме механически стимулированной реакции с индукционным периодом 110 с и полностью завершается к 120 с. К этому времени (120 с) в реакционной смеси с 50 мас. % Ni регистрируется значительное количество TiCx (до 38 мас. %) с более высоким содержанием углерода (C/Ti = 0.83), при этом образовавшиеся кристаллиты имеют крупный размер (~30 нм) по сравнению со смесью 50 мас. % Ti + (Ti + C), что достаточно обоснованно позволяет судить о жидкофазном механизме синтеза. В реакционной смеси с 50 мас. % Ti к 4 мин механической активации формируется до 42 мас. % TiCx с размером кристаллитов ~9 нм. В системе 50 мас. % Ni-(Ti-C) дисперсное упрочнение никеля карбидом титана усилено твердорастворным упрочнением, о чем свидетельствует формирование твердого раствора Ni(Ti) в этих же временных интервалах синтеза (120 с). Установлено, что сокращение индукционного периода позволяет существенно снизить загрязнение продуктов синтеза материалом мелющих тел и стенок барабанов.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее