М.В. Булатов1, О.С. Будникова1,2 1Институт динамики систем и теории управления им. В.М. Матросова Сибирского отделения Российской академии наук, Иркутск, Россия mvbul@icc.ru 2Иркутский государственный университет, Иркутск, Россия osbud@mail.ru
Ключевые слова: дифференциально-алгебраические уравнения, второй порядок, начальная задача, явные методы, экстраполяция, многошаговые методы
Страницы: 121-140
В статье рассмотрены линейные дифференциально-алгебраические уравнения второго порядка на конечном отрезке интегрирования с заданными начальными условиями. В терминах матричных полиномов выделен класс задач, имеющих единственное достаточно гладкое решение. Предполагается, что решение задачи может содержать жесткие и быстро осциллирующие компоненты. В работе подчеркнуты принципиальные трудности создания алгоритмов для численного решения рассматриваемого класса задач. Для построения эффективных методов их приближенного решения предложено представить исходную задачу в виде системы интегро-дифференциальных или интегральных уравнений с тождественно вырожденной матрицей перед главной частью. Далее, для записанных таким образом задач, предложены численные методы решения, основанные на явных методах Адамса для вычисления интегрального слагаемого и на экстраполяционных формулах для внеинтегральных слагаемых. Проведен анализ предложенных методов и представлены результаты расчетов тестовых примеров.
Предложен новый метод оценки параметров для решения проблемы, заключающейся в наличии ошибки наблюдения как в векторе наблюдений, так и в матрице коэффициентов для авторегрессионной модели. Сначала выполняется рекомбинация вектора наблюдений и матрицы коэффициентов, что позволяет избежать ситуации, когда одно и то же значение наблюдения появляется как в векторе наблюдений, так и в матрице коэффициентов. Затем выводится детальный алгоритм, основанный на принципе полных наименьших квадратов и непрямой адаптации. Эффективность и пригодность предлагаемого метода анализируются с использованием примеров проверки и моделирования и сравниваются со взвешенными полными наименьшими квадратами и коррелированными полными наименьшими квадратами.
Ш. Джалил, Х. Хилми, Х. Хусейн
Department of Mathematics, University of Sulaimani, Sulaimaniyah, Iraq shabaz.mohammedfaeq@univsul.edu.iq
Ключевые слова: полиномы Тушара, линейные дробные дифференциальные уравнения, численное решение, дробная производная Капуто
Страницы: 151-170
В данной статье представлен подход для аппроксимации решений дробно-дифференциальных уравнений мультивысокого порядка с использованием дробной производной Капуто вместе с начальными условиями. Этот метод основан на стандартных точках коллокации и полиномах Тушара. Линейное уравнение и его начальные условия могут быть преобразованы в матричные соотношения с использованием нового метода, что упрощает решение линейного алгебраического уравнения с обобщенными коэффициентами Тушара в качестве неизвестных. Вычислительная эффективность метода иллюстрируется примерами.
В.П. Ильин1,2 1Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия ilin@sscc.ru 2Новосибирский государственный технический университет, Новосибирск, Россия
Ключевые слова: предобусловленные крыловские методы, многомерные задачи, декомпозиция областей, многосеточные подходы, неполная факторизация, диагональная компенсация, распараллеливание алгоритмов
Страницы: 171-183
Рассматриваются итерационные процессы в подпространствах Крылова для решения систем линейных алгебраических уравнений (СЛАУ) с разреженными матрицами высокого порядка, возникающих при сеточных аппроксимациях многомерных краевых задач. Предобуславливание СЛАУ осуществляется на основе единообразного комбинированного подхода, включающего декомпозицию областей и рекурсивное применение двухсеточного алгоритма, которые реализуются путём формирования блочно-трёхдиагональных алгебраических и сеточных структур, обращаемых с помощью неполной факторизации и диагональной компенсации. Для стилтьесовых систем исследуются вопросы устойчивости и скорости сходимости итераций. Обсуждаются вопросы распараллеливания и обобщения предложенных методов на широкие классы актуальных практических задач.
А.В. Пененко1, Г.И. Казаков2, К.О. Иванов2 1Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия aleks@ommgp.sscc.ru 2Новосибирский национальный исследовательский государственный университет (НГУ), Новосибирск, Россия
Ключевые слова: химическая кинетика, ансамбли ОДУ, матрица чувствительности, кластеризация
Страницы: 185-205
Рассматриваются алгоритмы решения ансамблей ОДУ с различными наборами входных данных, возникающих при моделировании химической кинетики в рамках схемы расщепления по физическим процессам для мультифизичных расчетов. Оценивается эффективность алгоритма, объединяющего кластеризацию ансамбля входных данных и оценку решения внутри кластера с использованием матрицы чувствительности, полученной с помощью решения сопряженных уравнений. Алгоритмы реализованы на основе согласованных в смысле дискретного тождества Лагранжа численных схем для решения систем ОДУ типа продукции-деструкции. Изучается вклад кластеризации и матрицы чувствительности в эффективность алгоритма. Результаты тестирования на сценарии моделирования химии атмосферы показывают, что алгоритм позволяет уменьшить время вычислений за счет приемлемого снижения точности.
Дуйен Т.М. Фан1,2 1Department of Analysis, Faculty of Mathematics and Computer Science, University of Science, VNU-HCMC, Ho Chi Minh City, Vietnam duyenphanbk@gmail.com 2Vietnam National University, Ho Chi Minh City, Vietnam
Ключевые слова: гиперболические законы сохранения, уравнения Эйлера, методы конечных объемов
Страницы: 207-221
Мы изучаем одномерную задачу бесконечной трубы, которая открыта справа, и на левом конце которой установлен поршень. Поскольку вычислительная область конечна, а область задачи бесконечна, на численный результат влияет наличие отраженной волны, появляющейся, когда ударная волна перемещается вправо и взаимодействует с правой границей. Таким образом, необходимо неотражающее граничное условие, чтобы максимально уменьшить влияние отраженной волны. В данной статье мы используем уравнения Эйлера в массовых лагранжевых координатах в качестве управляющих уравнений и метод конечных объемов для вычисления численного решения. Чтобы устранить отраженную волну, мы используем уравнение типа Бюргерса в дополнительной вычислительной области. Полученные нами численные результаты показывают, что численная ошибка значительно уменьшается.
Ю. Хуа1, Ю. Тан1, Ж. Чен2 1College of Science, Hunan University of Science and Engineering, Hunan, China yuchunhua@huse.edu.cn 2School of Data Science, Guangzhou City University of Technology, Guangzhou, China chenzh@gcu.edu.cn
Ключевые слова: двухсеточный метод, смешанные конечные элементы P-P, схема L1, нелинейные дробные диффузионные уравнения
Страницы: 223-240
В статье представлен двухсеточный метод для решения нелинейных дробных по времени диффузионных уравнений. Во-первых, строится полностью дискретная схема с использованием P20- P1 смешанных конечных элементов и формулы L1 для пространственной и временной дискретизации соответственно. Во-вторых, анализируются устойчивость и погрешность полностью дискретной схемы. В-третьих, предлагается двухсеточный алгоритм, основанный на полностью дискретной схеме, и получены результаты анализа его устойчивости и ошибок. Наконец, приводятся некоторые численные примеры для подтверждения теоретических результатов.
А.Л. Агеев, Т.В. Антонова
Институт математики и механики им. Н.Н. Красовского Уральского отделения Российской академии наук, Екатеринбург, Россия ageev@imm.uran.ru
Ключевые слова: некорректная задача, метод регуляризации, линии разрыва, глобальная локализация, дискретизация, порог разделимости, сепарация изображений
Страницы: 241-256
Рассматривается некорректно поставленная задача локализации (определения положения) линий разрыва функции двух переменных при условии, что вне линий разрыва функция удовлетворяет условию Липшица, а в каждой точке на линии имеет разрыв первого рода. Для равномерной сетки с шагом τ предполагается, что в каждом узле известны средние значения на квадрате со стороной τ от возмущенной функции, и возмущенная функция приближает точную функцию в пространстве L2(R2). Уровень возмущения δ считается известным. Предлагается новый подход к построению регуляризирующих алгоритмов локализации линий разрыва на основе сепарации исходных зашумленных данных. На классе функций с кусочно-линейными линиями разрыва построены новые алгоритмы и доказана теорема сходимости с оценками точности аппроксимации.
Н.А. Артемова1, О.В. Ушакова1,2 1Институт математики и механики им. Н.Н. Красовского Уральского отделения Российской академии наук, Екатеринбург, Россия ana@imm.uran.ru 2Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, Екатеринбург, Россия uov@imm.uran.ru
Ключевые слова: структурированные сетки, деформированные объемы, оптимальные сетки, подвижные сетки
Страницы: 257-267
Описывается алгоритм морфинга, пополнивший технологию построения трехмерных структурированных сеток, предназначенную для численного решения дифференциальных уравнений, моделирующих вихревые процессы многокомпонентной гидродинамики. Алгоритм морфинга предназначен для построения структурированных сеток особой структуры в объемах, полученных деформацией объемов вращения телами, образованными поверхностями вращения с параллельными осями. Алгоритм разработан в рамках вариационного подхода построения оптимальных сеток и является нестационарным: на каждой итерации меняется (деформируется) форма области и сетка для нее, затем сетка оптимизируется в соответствии с критериями оптимальности, т.е. близости сетки к равномерной и ортогональной. Итерации повторяются до тех пор, пока деформация объема не достигнет требуемой формы. Алгоритм позволяет строить сетки в областях очень сложной геометрии, при этом не нужно задавать границу области сложной формы, достаточно описать объем вращения, деформирующий объем и указать параметры деформации. Приводятся примеры расчетов сеток.
Е.К. Гусева1,2, В.И. Голубев1, В.П. Епифанов2, И.Б. Петров1 1Московский физико-технический институт (национальный исследовательский университет), Долгопрудный, Россия guseva.ek@phystech.su 2Институт проблем механики им. А.Ю. Ишлинского Российской академии наук, Москва, Россия evp@ipmnet.ru
Ключевые слова: реология льда, упругопластичность, трещинообразование, гидростатическое ядро, нелинейные волны
Страницы: 269-286
В процессе приложения динамических нагрузок лёд демонстрирует сложное нелинейное поведение, зависящее от многих факторов, в том числе и от скорости деформирования. В прикладных задачах актуальными являются низкоскоростные столкновения, в которых лёд проявляет как вязкие, так и хрупкие свойства. Для отражения специфики локального разрушения льда в настоящей работе предлагается составная модель, выделяющая во льду гидростатическое ядро и упругопластическую зону, оставляя материал вдали от области удара упругим. Дополнительно учитывается объёмное трещинообразование. Верификация модели производится на основе сравнения результатов расчётов с лабораторным экспериментом со сферическим индентором. В результате численных расчётов удаётся воспроизвести явления, наблюдаемые в экспериментах. Реконструированы нелинейные волны, отражена волновая природа трещинообразования, получены характерные картины разрушения льда. Рассчитанные деформационные кривые подтверждают возможность качественного описания поведения льда на основной стадии удара.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее