Рассмотрена эволюция малых трехмерных возмущений ускоряемого тонкого жидкого слоя. Полученные аналитические решения отвечают различным видам начальных возмущений: в форме слоя, начальных скоростях, толщине слоя. В зависимости от безразмерных параметров, характеризующих начальные данные, возмущения могут со временем экспоненциально расти, оставаться ограниченными, изменять фазу.
Рассматривается формально возможный физический механизм развития длинноволновых возмущений течения тонкого слоя вязкой теплопроводной жидкости со свободной границей, характерная особенность которого состоит в том, что возникающие на границе напряжения Марангони формируются под влиянием изменений внутренней энергии межфазной поверхности. Влияние флуктуаций поверхностной внутренней энергии на течение слоя в рассматриваемом приближении имеет дисперсионный характер и может, в частности, способствовать регуляризации волновых режимов.
На примере решения задачи о воспламенении газовзвеси частиц бора в смеси кислорода и водяного пара иллюстрируется возможность смягчения условий воспламенения твердого горючего, имеющего на поверхности труднопроницаемое для окислителя оксидное покрытие. Снижение температуры воспламенения такого горючего достигается за счет активного газообразного реагента, способного вступить в химическую реакцию с оксидной пленкой и преобразовать ее в продукты, не обладающие блокирующими свойствами. Расчет показал, что если удаление пленки B2O3, мешающей воспламенению частиц, происходит только в результате ее испарения, то температуры воспламенения частиц высоки. Газификация оксида водяным паром существенно ускоряет удаление пленки, что приводит к снижению температур воспламенения по сравнению с сухой средой. Эксперимент подтвердил справедливость расчета. Эффект проявляется тем сильнее, чем выше реакционная поверхность реагирующей системы. Из анализа стационарных решений системы уравнений на устойчивость к малым возмущениям получено критическое условие воспламенения газовзвеси частиц. Показано, что существует оптимальное соотношение окисляющих компонентов, при котором реализуется минимальная температура воспламенения взвеси.
На основе экспериментальных исследований определены кинетические параметры высокотемпературного пиролиза сланца. Рассмотрена простая математическая модель, позволяющая рассчитать динамику процесса термической деструкции твердого топлива и найти характерное время процесса. Приведен пример конструктивного выполнения реактора-пиролизера барабанного типа.
Предложена математическая модель и проведено численное исследование горения осесимметричных гранул топлива в условиях обдува. Исследовано влияние параметров набегающего потока (скорости, давления и температуры), а также размеров и геометрии поверхности на скорость горения гранул. Представлены физические картины течения около горящих гранул топлива.
Рассмотрена неакустическая (низкочастотная) неустойчивость горения твердого топлива в реактивном двигателе. Предложена модель нестационарного горения в двигателях с канальными зарядами. Модель учитывает изменение распределения температуры в продуктах горения при изменении давления газа (Махе-эффект). Нестационарная скорость газовыделения и температура продуктов горения определяются на основе феноменологического подхода Зельдовича с учетом изменения температуры поверхности топлива (модель Новожилова) и температуры пламени (модель Гостинцева и Суханова). Определена зависимость границы области устойчивости РДТТ от длины канала заряда и предсоплового объема камеры двигателя. Показано, что Махе-эффект приводит к значительному (1,5 2 раза) сужению области параметров устойчивого горения в РДТТ. Установлено, что РДТТ с канальным зарядом имеет более узкую область устойчивости по параметру Зельдовича k, чем РДТТ с торцевым зарядом, при одинаковых объемах камер сгорания. Для канальных зарядов положение границы устойчивости зависит, главным образом, от объема предсопловой части камеры сгорания.
C целью изучения характера взаимовлияния реакции в твердой фазе и механических процессов при зажигании кристаллов взрывчатых веществ в работе предложена физико-математическая модель процесса зажигания, основанная на модели анизотропной среды с повреждениями. В случае гексагонального кристалла модель сводится к связной одномерной модели зажигания с более широкой областью изменения параметров, чем это было в модели зажигания изотропного вещества. Например, коэффициент связности полей деформации и температуры теперь может принимать отрицательные значения. Приведены примеры численного решения задачи о зажигании в различных частных случаях.
В рамках теории критического диаметра детонации Дремина – Трофимова исследованы кинетика и механизм химических реакций в детонационной волне растворов нитрогликоля, этиленгликольдинитрата и уксусного ангидрида в азотной кислоте. Расчет параметров состояния вещества в ударной и детонационной волнах проводился с помощью пакета программ SGKR. Показано, что разложение смесей органических веществ с азотной кислотой в детонационной волне является сложной реакцией, включающей несколько стадий. Рассмотрены различные кинетические модели, рассчитаны эффективные значения кинетических параметров для каждой стадии и всего процесса в целом.
Определена работоспособность смесей аммонита 6ЖВ с различными добавками и смесей аммиачной селитры с алюминием различного состава. С использованием полученных результатов и известных литературных данных получена формула для расчета относительной работоспособности промышленных взрывчатых веществ, содержащая два параметра – теплоту взрыва и объем продуктов взрыва. Установлено, что работоспособность смесей селитры с алюминием (при мощном инициировании, вызывающем в смесях пересжатый режим детонации) превышает работоспособность эталонного взрывчатого вещества (аммонита 6ЖВ) при содержании алюминия 10 40%, при этом максимум работоспособности наблюдается для смеси, содержащей 30% алюминия. Результаты эксперимента и расчета по предложенной формуле удовлетворительно согласуются между собой.
Исследована структура кумулятивной струи, образующейся при высокоскоростном косом соударении плоских металлических пластин. Показано, что в условиях проведенных экспериментов при симметричном косом соударении (обе пластины метаются под углом навстречу друг другу) образуется компактная кумулятивная струя; при несимметричном косом соударении (метаемая пластина под углом соударяется с неподвижной) образуется диспергированная кумулятивная струя. Исключение составляют металлы, обладающие высокой динамической прочностью (уран, тантал). В режиме нагружения, когда скорость перемещения точки контакта меньше скорости звука,
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее