Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Название:
Аннотации:
Авторы:
Организации:
Номера страниц:
Ключевые слова:
   

Физика горения и взрыва

2001

Выпуск № 2

41951.
Математическое моделирование теплофизических и термохимических процессов при горении вспучивающихся огнезащитных покрытий

В. Л. Страхов, А. Н. Гаращенко, Г. В. Кузнецов*, В. П. Рудзинский*
"Научно-производственная фирма “Теплоогнезащита”, 141300 Сергиев Посад, Московской обл.
*НИИ прикладной математики и механики при Томском государственном университете, 634050 Томск"

Аннотация >>
Представлена математическая модель горения вспучивающихся огнезащитных материалов, учитывающая основные физико-химические процессы, протекающие при горении таких материалов. В модели используется минимальное количество эмпирических постоянных, определяемых в условиях, близких к моделируемым. Результаты численного анализа хорошо соответствуют экспериментальным значениям температур на границе “вспучивающийся материал – защищаемая конструкция”.


Выпуск № 2

41952.
Тепловой взрыв пластины при граничных условиях второго и третьего родов

Р. Ш. Гайнутдинов
Казанский государственный технологический университет, 420015 Казань

Аннотация >>
Исследованы критические условия теплового взрыва плоского слоя при граничных условиях второго рода на одной поверхности и третьего рода на другой. Вычислен критический параметр Франк-Каменецкого. Даны аппроксимирующие функции для определения критического параметра.


Выпуск № 2

41953.
Влияние гексогена и октогена на эффективность действия катализаторов горения баллиститных порохов

А. П. Денисюк, Ю. Г. Шепелев, Д. Л. Русин, И. В. Шумский
Российский химико-технологический университет им. Д. И. Менделеева, 125047 Москва

Аннотация >>
Для увеличения энергетических характеристик баллиститных порохов в их состав вводятся мощные взрывчатые вещества (ВВ) – гексоген или октоген. Их влияние на катализ горения порохов в литературе почти не освещено. В статье рассматривается роль гексогена и октогена в катализе горения баллиститных порохов. Экспериментально исследованы пороха, имеющие различный состав и энергетику. Найдено, что гексоген или октоген уменьшают скорость горения баллиститных порохов (без катализаторов) средней и повышенной калорийности независимо от того, как они влияют на энергетику порохов и характеристики их горения. Показано, что если катализаторы влияют на скорость горения пороха, то добавление гексогена или октогена к этому пороху (сверх 100%) не уменьшает относительную эффективность катализа, а даже несколько увеличивает ее.


Выпуск № 2

41954.
Волна воспламенения в двухскоростной газовзвеси частиц магния

Ю. А. Гостеев, А. В. Фёдоров
Институт теоретической и прикладной механики СО РАН, 630090 Новосибирск

Аннотация >>
Развита теория стационарной волны воспламенения в неравновесной по скоростям фаз многокомпонентной смеси газа и частиц магния. Определены в том числе условия, при которых воздействие ударной волны на облако частиц приводит к их воспламенению либо к “регулярному” нагреву. Выявлены качественно различные типы поведения температур дисперсной и газовой фаз за фронтом лидирующей ударной волны. Продемонстрирована существенная роль межфазного трения на ранних стадиях развития теплового взрыва. Проведена верификация модели на основе данных эксперимента по зависимости периода индукции окислительной реакции в облаке частиц от числа Маха ударной волны. Показано согласование расчетных данных, полученных в рамках равновесной и неравновесной по скоростям фаз моделей при малых размерах частиц.


Выпуск № 2

41955.
Моделирование конвективных детонационных волн в пористой среде методом решеточных газов

А. П. Ершов, А. Л. Куперштох, Д. А. Медведев
Институт гидродинамики им. М. А. Лаврентьева, 630090 Новосибирск

Аннотация >>
Рассматривается конвективная детонация “газ – пленка” в жесткой пористой среде. Движение газовой фазы описывается дискретной стохастической моделью решеточного газа с учетом реальных законов трения и теплообмена фаз. Кинетика реакции задавалась так, чтобы характерное время горения соответствовало эксперименту. Модель воспроизводит основные характеристики явления: неплоский (изрезанный) фронт волны, плавное нарастание среднего по сечению заряда давления, заторможенность среднего течения, медленное охлаждение продуктов горения после окончания реакции.


Выпуск № 2

41956.
Детонация в вакуум-взвеси вторичных взрывчатых веществ

А. В. Пинаев
Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

Аннотация >>
Экспериментально показано существование самоподдерживающейся детонации в вакуумированной взвеси частиц вторичного взрывчатого вещества. Опыты проведены с октогеном в вертикальной ударной трубе диаметром 0,07 м и длиной 7 м в диапазоне среднеобъемных концентраций частиц 0,32 0,92 кг/м3. Установлено, что скорость вакуумной детонации практически не зависит от среднеобъемной концентрации частиц и составляет (1750 50) м/с, профиль давления волны вакуумной детонации плавный. Приведены данные об электропроводности продуктов вакуумной детонации и длине зоны реакции.


Выпуск № 2

41957.
О влиянии условий ударно-волнового нагружения на поведение пластического взрывчатого состава на основе тэна

В. К. Голубев, А. П. Погорелов
ВНИИ экспериментальной физики, 607190 Саров

Аннотация >>
Представлены результаты исследования откольного разрушения и возбуждения взрывчатого превращения в пластическом взрывчатом составе ТП-83 при ударно-волновом нагружении. В первом случае образцы толщиной 20 мм нагружались ударом стальных пластин толщиной 1,0 и 1,6 мм, разгоняемых взрывом до скоростей 120 420 м/с, во втором случае — до скоростей 430 ÷ 580 м/с. Кроме того, во втором случае образцы толщиной 5 мм нагружались ударом медных пластин толщиной 0,10 0,28 мм, разгоняемых до скоростей 590 1250 м/с. Расчет условий нагружения образцов выполнялся в упругопластической постановке. Установлены и аналитически представлены взаимосвязи нагрузок, приводящих к откольному разрушению взрывчатого состава и к возбуждению в нем взрывчатого превращения, с реализуемыми условиями ударно-волнового нагружения.


Выпуск № 2

41958.
К определению наклона линии фазового равновесия лагранжевыми датчиками в ударных волнах

А. М. Молодец
Институт проблем химической физики РАН, 142432 Черноголовка, molodets@icp.ac.ru

Аннотация >>
Предложена новая идея экспериментальной методики, позволяющей определять производную давления по температуре в точке пересечения ударной адиабаты и линии равновесия двух фаз в координатах давление – температура. Дана оценка измеряемых величин на конкретном примере полиморфного превращения белого олова в ударных волнах.


Выпуск № 2

41959.
Применение электромагнитной модели для диагностики ударно-волновых процессов в металлах

С. Д. Гилев
Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

Аннотация >>
С целью проверки электромагнитной модели ударного сжатия проводника в магнитном поле проведены ударно-волновые эксперименты с константаном. Результаты экспериментов показывают, что электромагнитная модель дает качественно правильное описание явления. Некоторое несогласование между расчетными и экспериментальными зависимостями может быть связано с факторами, не учитываемыми моделью (конечная толщина ударного фронта, неодномерность ударной волны и электромагнитного поля в измерительной ячейке). Из экспериментов определена электропроводность константана в условиях однократного ударного сжатия. Выполненные исследования позволяют обосновать электромагнитную модель ударного сжатия металла в магнитном поле и служат основой для разработки новых методик динамического эксперимента.


Выпуск № 2

41960.
Термопарный метод исследования поля давления в металле при динамическом нагружении

В. В. Пай, И. В. Яковлев, Г. Е. Кузьмин
Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

Аннотация >>
Исследуются термоэлектрические эффекты в биметаллической пластине, нагружаемой скользящей детонационной волной. Измерено распределение электрического потенциала на поверхности такой термопары, неоднородно нагретой вследствие высокоскоростной деформации. Результаты эксперимента используются для определения напряженного состояния металла и сопоставляются с расчетами, выполненными в рамках модели Ми – Грюнайзена.



Статьи 41951 - 41960 из 45189
Начало | Пред. | 4194 4195 4196 4197 4198 | След. | Конец Все