В простейшей постановке проанализирована задача о зажигании твердого вещества тепловым потоком через отслаивающуюся преграду. Получено приближенное аналитическое решение задачи, из которого следует, что зависимость времени зажигания твердого вещества (с газообразным продуктом реакции) становится немонотонной, если толщина преграды мала. Качественные выводы согласуются с результатами численного счета.
Получено аналитическое решение задачи о поле температур в бесконечном по высоте слое растительного сырья. Приведены простые формулы для определения пожароопасной температуры и времени ее достижения. Результаты аналитического решения хорошо согласуются с данными численного анализа и экспериментом.
Высыхание лесных горючих материалов является наиболее важной и наименее изученной стадией многостадийного процесса их горения в природных условиях. Выполнено физическое и математическое моделирование сушки слоя лесных горючих материалов в сопряженной постановке, в рамках которой решаются уравнения бинарного пограничного слоя и уравнения тепло- и массопереноса в слое лесных горючих материалов с соответствующими граничными и начальными условиями. Получены решения задачи для суточного и сезонного изменений температуры окружающей среды для трех сценариев развития погодных условий. Проведено сравнение с экспериментальными данными по сушке хвои сосны и ряда других хвойных пород деревьев. Дана полноценная физико-математическая основа для прогноза возникновения лесных пожаров.
О. А. Алексеев, М. Э. Шамсутдинов, Ф. Х. Кутышев*, А. В. Косточко*
Федеральный НПЦ “Государственный институт прикладной оптики”, 420075 Казань *Казанский государственный технологический университет, 420015 Казань
Приведены результаты исследований процесса горения брикетных топлив, созданных на основе использования устаревшего артиллерийского пороха и лигнина. Определены температуры диффузионного пламени факела и кокса брикетных топлив, а также линейные скорости факельной и бесфакельной стадий горения. Предложена модель и приведены результаты расчета лучистой составляющей в общем балансе теплоты сгорания лигниносодержащих топлив.
Исследованы закономерности горения зерненых порохов в широком диапазонеплотностей заряжания. При этом использовались нетрадиционные схемыманометрических бомб и модельные баллистические установки, на которых моделировались условия, близкие к реальному выстрелу. Экспериментально установлено, что причиной нестабильности выстрела из легкогазовой установки является плохая воспроизводимость процесса воспламенения и горения исследуемых порохов при плотностях заряжания Δ≤0,5 г/см3. Показано, что различия в закономерностях газообразования при горении мелких трубчатых и многоканальных порохов в условиях классической манометрической бомбы (Δ ≤ 0,3 г/см3) и в реальном выстреле (Δ ≥ 0,6 г/см3) связаны не только с влиянием нестационарности горения, но и с зависимостью формы горящего зерна (площади горящей поверхности) от условий эксперимента, и в частности от плотности заряжания. Показано, что использование ступенчатой зависимости множителя при давлении в законе горения позволяет получить хорошее согласование экспериментальной и расчетной кривых давления, включая период воспламенения, что позволяет более точно описывать процесс горения комбинированных зарядов.
И. А. Сергиенко, Н. И. Полетаев, А. В. Флорко
Институт горения и нетрадиционных технологий Одесского государственного университета, 65026 Одесса, Украина
Предложена методика исследования процессов горения, основанная на их нестационарности. Исследованы температурные и спектральные зависимости испускательных и поглощательных характеристик частиц MgO и их газовзвесей при высоких температурах. Полученные константы позволяют решать задачи о радиационном теплообмене. Обсуждается вопрос о существовании в зоне горения равновесия между газообразным оксидом магния и конденсированным.
Представлены результаты численного моделирования структуры течений с наклонными детонационными волнами, которые возникают при обтекании двумерных поверхностей сжатия (клин, конус) сверхзвуковым потоком однородно перемешанной смеси водорода с воздухом. В первой серии расчетов внутренняя структура фронта детонации не разрешена, но физические процессы в остальной области течения моделировались с учетом неравновесных химических реакций. Получена сложная волновая структура такого течения, и исследована зависимость этой структуры от параметров задачи. Во второй серии расчетов получены нестационарные волновые структуры во фронте детонации. Проведено сопоставление этих нестационарных волн со структурой головы спина в нестационарной спиновой детонации.
Предложен приближенный метод расчета показателей чувствительности (критического давления инициирования и критической толщины заряда) твердых взрывчатых смесей (взрывчатых составов, смесей окислителя с горючим) к удару. Расчет основан на ряде модельных представлений о физико-химических и взрывчатых свойствах реакционноспособных смесевых систем. Выполнены демонстрационные расчеты показателей чувствительности смесей октогена с тротилом, перхлората аммония с полиметилметакрилатом и тротилом, результаты которых сравниваются с данными лабораторных экспериментов с ударом на копре.
Рассмотрено влияние механических нагрузок, возникающих при ударе, на частоту гомогенной и гетерогенной нуклеации и скорость терморазложения энергоемких конденсированных систем при законах деформирования, соответствующих копровым испытаниям. Приведены примеры расчетов основных параметров таких процессов.
С помощью разложения в ряд по радиальной переменной осуществляется переход от системы уравнений в частных производных, описывающих стационарное течение за фронтом ударной волны детонационного комплекса при детонации цилиндрического заряда, к системе обыкновенных дифференциальных уравнений. Формулируются необходимые уравнения для нахождения производных от решений по параметрам и начальные условия для них. Наложение условия непрерывной продолжаемости решений приводит к уравнениям, позволяющим определить форму фронта ударной волны как функцию скорости волны.