Приведены результаты исследования структуры факела при диффузионном горении водорода в спутной сверхзвуковой высокоэнтальпийной нерасчетной струе воздуха. На основе регистрации излучения в диапазоне длин волн 260 350 нмнм в поперечных сечениях и по длине пламени получена трехмерная томографическая реконструкция факела, которая подтвердила взаимосвязь газодинамической структуры с интенсивностью горения. Экспериментально установлена возможность существования режимов с периодическими повторяющимися циклами полного погасания и последующего воспламенения водорода в соответствии с бочкообразной структурой нерасчетной струи. Отмечается существование локальных периферийных областей горения, что может свидетельствовать о наличии вихревых образований, которые в пространственном изображении (полученном в предположении осесимметричности излучения) имеют вид кольцевых зон. Не исключена возможность, что в реальном течении на периферии факела формируются спиралевидные структуры.
Рассмотрена задача о самовоспламенении неподвижного облака частиц двух сортов (двухкомпонентной газовзвеси). Получены приближенные аналитические зависимости для периода индукции самовоспламенения, а также для критических условий воспламенения двухкомпонентной газовзвеси при наличии теплообмена облака с окружающей средой и в случае, когда один из компонентов состоит из частиц вещества, способного к эндотермической химической реакции. На основе сравнения полученных приближенных аналитических формул с численным решением нестационарной задачи определены области их применения.
На основе уравнений фильтрации с учетом теплопередачи в области прогрева решается задача о неустойчивости малых возмущений фронта волны фильтрационного горения газа. Получены выражения для декремента роста и критического поперечного размера возмущения. Решение задачи об устойчивости фронта получено с учетом макроскопического перераспределения фильтрации в системе и включает такие макроскопические характеристики, как поперечный размер, ширина высокотемпературной зоны и др. Предложен метод учета влияния характеристик системы на развитие возмущений. Показано, что малые деформационные возмущения фронта всегда растут до определенной амплитуды, дальнейшее их развитие – продолжение роста или стабилизация – определяется характеристиками системы.
На базе уравнений Рейнольдса и –-модели турбулентности исследовано влияние геометрических и режимных параметров вихревой горелки с центральным телом и диффузором на характеристики течения и стабилизацию пламени при горении предварительно перемешанной газовой смеси.
Предложена методика исследования динамики горения и уноса массы малолетучих частиц топлив, основанная на синхронном измерении “термометрической” и пирометрической (цветовой) температур. Методика позволяет в широком диапазоне режимных параметров детально изучить временные фазы и массовые скорости горения частиц топлива.
Предложена математическая модель для описания движения смеси газа и реагирующих металлических частиц в двухскоростном двухтемпературном приближении механики гетерогенных сред. В качестве приложения данной модели развита теория волны воспламенения в смеси газа и частиц магния, обобщающая теорию теплового взрыва Н. Н. Семенова на случай движущегося облака частиц. Дана классификация типов течения смеси за фронтом ударной волны. Расчетный период индукции облака коррелирует с данными эксперимента. Продемонстрированы устойчивое распространение по смеси стационарной волны воспламенения и возможность ее инициирования.
Представлены результаты изучения горения хрома в азоте. Установлено, что горение протекает в твердой фазе. Хром реагирует с азотом в волне горения стадийно. Первая стадия – образование Cr2N – протекает в режиме отрыва. Максимальная температура горения ограничена температурой диссоциации CrN. За фронтом горения наблюдается догорание.
С помощью преобразования Лапласа показана возможность нахождения уравнений, определяющих изменения во времени температуры и выгорания реакционноспособного тела в сечении х = 0 в процессах теплового воспламенения. Получены уравнения для температуры и выгорания полуограниченного тела в точке воспламенения х = 0 при зажигании потоком излучения и при очаговом тепловом взрыве. Проведен асимптотический анализ полученных уравнений, определены времена зажигания тел и критические условия очагового воспламенения. Дано обоснование “адиабатического метода” определения временных характеристик зажигания В. Н. Вилюнова. Подтверждены результаты асимптотического анализа очагового теплового воспламенения.
В. И. Шарыпов1, Н. Г. Береговцова1, Б. Н. Кузнецов1, С. В. Барышников1, N. Marin2, J. V. Weber2 1Институт химии и химической технологии Сибирского отделения РАН, ул. К. Маркса, 42, Красноярск 660049 (Россия) E-mail: sharypov@krsk.info 2Laboratoire de Chimie et Applications, Universite de Metz, 57500, Rue Viktor Demange, Saint-Avold (France)
Страницы: 429-436
Изучено влияние содержания компонентов в смеси атактический полипропилен/гидролизный лигнин на выход продуктов и состав легкокипящей углеводородной фракции (<180 °C), образующейся при пиролизе смеси в автоклавных условиях в инертной атмосфере при 400 °С. Установлено, что добавка от 20 до 50 % лигнина по отношению к массе смеси существенно увеличивает выход легкокипящих углеводородов. Жидкие продукты с максимальным выходом легкокипящей фракции (массовая доля 52%) получены при массовой доле лигнина в исходной смеси 30 %. Анализ состава легкокипящих углеводородных продуктов методами ATR-спектроскопии и хромато-масс-спектрометрии показал, что они образуются преимущественно в результате термических превращений полипропилена. Специфический вклад лигнина при совместном пиролизе с полипропиленом проявляется в увеличении содержания углеводородов С9 и b-олефинов в составе легкокипящей фракции.
В. В. Велинский, Г. М. Гусев
Объединенный институт геологии, геофизики и минералогии имени А. А. Трофимука Сибирского отделения РАН, проспект Академика Коптюга, 3, Новосибирск 630090 (Россия) E-mail: ofiolit@uiggm.nsc.ru
Страницы: 437-439
Проведено исследование гипса (дигидрата сульфата кальция), полученного в ходе переработки серпентинита. Показано, что данный продукт характеризуется высокой экологической чистотой и удовлетворяет требованиям ГОСТ к гипсу 1-го сорта. Гипсовое вяжущее из гипса серпентинита соответствует быстро и нормально твердеющим маркам Г-2–Г-4 среднего помола. По своим свойствам и качеству материал применим в различных отраслях промышленности и медицине.