А. В. Аникеенко1, А. В. Ким2, Н. Н. Медведев3 1 Учреждение Российской академии наук Институт химической кинетики и горения СО РАН, Новосибирск, nikmed@kinetics.nsc.ru 2 Учреждение Российской академии наук Институт химической кинетики и горения СО РАН, Новосибирск, nikmed@kinetics.nsc.ru 3 Учреждение Российской академии наук Институт химической кинетики и горения СО РАН, Новосибирск, nikmed@kinetics.nsc.ru
Ключевые слова: молекулярная динамика, структура простых жидкостей, молекулярные жидкости, жидкие алканы
Страницы: 1127-1133
Методом классической молекулярной динамики с использованием пакета GROMACS получены модели гексана, 2,3-диметилбутана и циклогексана. Использованы два разных поля сил (полноатомное описание и приближение объединенных атомов). Для центров масс молекул рассчитаны функции радиального распределения (ФРР) и проведен анализ формы симплексов Делоне. Показано, что наиболее компактные молекулы (циклогексан и 2,3-диметилбутан) располагаются в пространстве подобно атомам в простых жидкостях. При этом структурные различия между жидкостями циклогексана и 2,3-диметилбутана такие же, как между простыми жидкостями при соответствующих плотностях.
В. Н. Афанасьев1, В. А. Голубев2 1 Институт химии растворов РАН, Иваново, vna@isc-ras.ru 2 Институт химии растворов РАН, Иваново
Ключевые слова: гидратация, числа гидратации, молярная адиабатическая сжимаемость гидратных комплексов, свободный растворитель
Страницы: 1134-1146
На основании данных по скорости ультразвука, плотности и теплоемкости водных растворов мочевины, уротропина, ацетонитрила и ряда амидов N-ацетиламинокислот с привлечением теоретической модели сольватации определены структурные характеристики гидратных комплексов неэлектролитов: числа гидратации h, молярная адиабатическая сжимаемость гидратных комплексов βhVh, молярный объем воды в гидратной сфере V1h, молярный объем растворенного вещества без гидратного окружения V2h и другие. Сравнение гидратного окружения уротропина с молекулами мочевины и ацетонитрила в водной среде показало существенное гидрофобное взаимодействие его с растворителем.
Ю. А. Миргород1, Е. Б. Постников2, Н. А. Борщ3 1 Юго-западный государственный университет, курск, yu_mirgorod@mail.ru 2 курский государственный университет, 305000, Курская область, Курск, ул. Радищева, д. 33 3 Юго-западный государственный университет, курск
Ключевые слова: ЯМР 13С, хлориды алкиламмония, структура мицелл в воде, структурная модель ассоциации
Страницы: 1147-1154
Определены химические сдвиги ЯМР 13C водных растворов хлоридов алкиламмония (С6-С9) в области критической концентрации мицеллообразования (ККМ). В рамках модели действующих масс предложен новый метод обработки экспериментальных данных ЯМР 13C водных растворов хлоридов алкиламмония для расчета чисел агрегации мицелл (N) и констант равновесия процесса мицеллообразования (K). С использованием N и K получены стандартные энергии Гиббса мицеллообразования и ее инкремент на метиленовую группу: -1,8 кДж/моль. Малая величина инкремента подтверждает гипотезу о структуре мицелл, состоящих из контактных и гидратированных агрегатов. Обсуждается структурная модель ассоциации хлоридов алкиламмония в воде, влияние длины алкильной цепочки на ККМ, гидрофобное взаимодействие, образование гидратного ассоциата, а также возможная на этой основе классификация ПАВ.
Б. И. Кидяров1, В. В. Атучин2, Н. В. Первухина3 1 Учреждение Российской академии наук Институт физики полупроводников им. А.В. Ржанова, 630090, Новосибирск, пp. ак. Лавpентьева, 13 2 Учреждение Российской академии наук Институт физики полупроводников им. А.В. Ржанова, 630090, Новосибирск, пp. ак. Лавpентьева, 13 3 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, pervukh@niic.nsc.ru
Ключевые слова: нецентросимметричные кристаллы, фосфаты, структура, микроструктура, нелинейно-оптические свойства
Страницы: 1155-1160
На примере нецентросимметричных (НЦС) кристаллов фосфатов проведена систематизация взаимосвязи состав-структура-свойство с построением множества структур фосфатов на карте длин оксидных связей. Показано, что это множество располагается в 12 подобластях розетки из трех эллипсов ацентричности, содержащих кристаллы различных структур и с разной величиной нелинейно-оптических свойств. Взаимно-однозначное соответствие структуры и набора НЦС свойств кристаллов позволяет более надежно устанавливать их структурно-физические данные.
С. А. Громилов1, С. А. Кинеловский2, А. В. Алексеев3, И. Б. Киреенко4 1 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, grom@niic.nsc.ru 2 Учреждение Российской академии наук Институт гидродинамики им. М.А. Лаврентьева СО РАН, 630090 Новосибирск, пр. акад. Лаврентьева, 15 3 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск 4 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск
Ключевые слова: кумулятивный синтез, покрытие, борид вольфрама, W2B, ?-WB, рентгенофазовый анализ, микротвердость
Страницы: 1161-1166
В условиях кумулятивного взрыва на титановых и стальных мишенях получены покрытия, содержащие высокотемпературные фазы боридов вольфрама - W2B и β-WB. Микротвердость в некоторых участках мишени достигает ≥42 ГПа. Проведен рентгенофазовый анализ разных участков покрытий. Значения параметров элементарных ячеек свидетельствуют об образовании фаз переменного состава. Проведено уточнение кристаллической структуры β-WB.
Синтезирован комплекс [Zn(phen)3](2,2′-Bipy-5,5′-дикарбоксилат)·12H2O. Методом рентгеноструктурного анализа установлена кристаллическая структура этого соединения. Кристаллы координационного соединения имеют моноклинную элементарную ячейку с параметрами: a = 12,2533(14), b = 18,976(2), c = 22,426(3) Å, β = 105,675(2)°, V = 5020,54(300) Å3, Z = 4, пр. гр. P21/n. Полиэдр атома Zn - искаженный октаэдр, образованный за счет координации шести атомов N трех молекул phen. В структуре образуются трехмерные ансамбли вследствие π-π-взаимодействия молекул phen, а также молекул phen и 2,2′-бипиридил-5,5′-дикарбоксилат-иона. Анион 2,2′-бипиридил-5,5′-дикарбоксилат и 12 молекул воды свободны в структуре, но молекулы кристаллизационной воды образуют кластеры.
Т. М. Полянская1, М. К. Дроздова2, В. В. Волков3 1 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, polyan@niic.nsc.ru 2 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск 3 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск
Ключевые слова: низкотемпературный РСА, кристаллическая структура, медь, кобальт, фенантролиновый лиганд, производные орто-карборана(12), ацетонитрил
Страницы: 1174-1179
Методом РСА изучена кристаллическая структура нового соединения, содержащего дикарболлильный кластерный анион Co(III) состава [CuPhen3][Co(C2B9H11)2]2·CH3CN, где Phen - 1,10-фенантролин. Кристаллографические данные: C46H71B36N7Co2Cu, M = = 1292,66, система моноклинная, пр. гр. P21/с, параметры элементарной ячейки: a = 14,7178(2), b = 19,5640(4), c = 22,8663(5) Å, β = 106,6601(7)°, V = 6307,75(33) Å3, Z = 4, dвыч = 1,361 г/см3, T = 100 K, μ = 0,90 мм-1. Структура расшифрована прямым методом и уточнена полноматричным МНК в анизотропно-изотропном (для атомов H) приближении до заключительных факторов R1 = 0,0370, wR2 = 0,0869 для 13807 Ihkl ≥ 2σI из 18295 измеренных Ihkl. Структура построена из катионов [CuPhen3], анионов Co(C2B9H11)2 и молекул ацетонитрила MeCN. Центральный атом Cu в катионе располагается в общей позиции и имеет координационную геометрию в виде искаженного вытянутого октаэдра, образованного шестью атомами азота трех бидентатных лигандов Phen. Координация Cu(II) в катионе (2+2+2) с двумя длинными аксиальными и четырьмя более короткими экваториальными связями Cu-N, средние значения которых равны 2,239(2) и 2,077(1) Å соответственно. Каждый из анионов имеет свое собственное расположение групп -C2-, для Co(1) - квази-гош-конфигурация, для Co(2) - квази-транс-конфигурация.
The two title compounds were prepared from the ligand pydc with cobalt(II) acetate in the presence of L1 and L2 (L1 = 1,3-bis(4-pyridyl)propane, L2 = 3-amino-1H-1,2,4-triazole, pydc = 2,6-pyridinedicarboxylic acid). The complexes were characterized by elemental analysis, IR spectrum and single crystal X-ray diffraction. Single crystal analysis shows that in two complexes coordination number around Co atom is six with distorted octahedral geometry, and both two complexes consist of ion pairs containing cationic [Co(H2O)n]2+ and anionic [Co(pydc)2]2- units.
Л. Ф. Крылова1, Л. М. Ковтунова2, Г. В. Романенко3, Л. А. Шелудякова4 1 Новосибирский государственный университет 2 Новосибирский государственный университет, gchem@fen.nsu.ru 3 Учреждение Российской академии наук Институт ″Международный томографический центр″ СО РАН, 630090 Новосибирск, ул. Институтская, 3а 4 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, 630090 Новосибирск, пр. Акад. Лаврентьева, 3
Ключевые слова: стереоизомеры, комплексы, платина, треонин, аллотреонин, ЯМР спектры, ИК спектры, кристаллическая структура
Страницы: 1187-1199
Б. В. Буквецкий1, А. Г. Мирочник2, П. А. Жихарева3, В. Е. Карасев4 1 Институт химии ДВО РАН, Владивосток, mirochnik@ich.dvо.ru 2 Институт химии ДВО РАН, Владивосток, mirochnik@ich.dvо.ru 3 Институт химии ДВО РАН, Владивосток, mirochnik@ich.dvо.ru 4 Институт химии ДВО РАН, Владивосток, mirochnik@ich.dvо.ru
Ключевые слова: европий(III), комплексы, структура, люминесценция, триболюминесценция
Страницы: 1200-1205
Методом рентгеноструктурного анализа определена атомная структура кристаллов комплекса [Eu(NО3)3(ГМФА)3] (ГМФА - гексаметилфосфотриамид), обладающего интенсивной триболюминесценцией. Сингония центросимметричных кристаллов моноклинная: a = 13,785(1), b = 19,746(2), c = 14,723(1) Å, β = 102,143(2)°, пр. гр. P21/n, Z = 4, ρвыч = 1,484 г/см3. Структура кристаллов представлена обособленными комплексами С18Н54EuN12O12P3, связанными ван-дер-ваальсовым взаимодействием с хорошо выраженными плоскостями спайности. Координационный полиэдр атома Eu(III) отражает состояние искаженной квадратной антипризмы. Обсуждены возможные причины спектральных различий штарковской структуры фото- и триболюминесценции.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее