В. Г. Власенко1, А. Т. Шуваев2, И. А. Зарубин3 1 Научно-исследовательский институт физики, Южный федеральный университет, Ростов-на-Дону, vlasenko@ip.rsu.ru 2 Научно-исследовательский институт физики, Южный федеральный университет, Ростов-на-Дону 3 Научно-исследовательский институт физики, Южный федеральный университет, Ростов-на-Дону
Ключевые слова: рентгеновская флуоресцентная спектроскопия, теория функционала плотности, декакарбонил марганца
Страницы: 272-279
На основе квантово-химических расчетов методом функционала плотности проведен анализ электронного строения биядерного декакарбонила марганца Mn2(CO)10. Полученные результаты расчетов использованы для интерпретации рентгеновских флуоресцентных CKα-, OKα-, MnLα- и MnKβ5-спектров Mn2(CO)10. Построенные на основе этих расчетов теоретические флуоресцентные спектры находятся в хорошем согласии с экспериментом.
Ю. Т. Павлюхин
Учреждение Российской академии наук Институт химии твердого тела и механохимии СО РАН, Новосибирск, pav@solid.nsc.ru
Ключевые слова: жидкость твердых сфер, жидкость с потенциалом взаимодействия SW, простые жидкости
Страницы: 280-287
Анализируются физические следствия из полученного в работе [1] результата о том, что случайная величина - число ближайших соседей Mλ в жидкости, состоящей из N твердых сфер в каноническом ансамбле Гиббса - выражается как сумма N независимых и одинаково распределенных случайных величин. Среднее значение некоторого функционала от этой случайной величины определяет свободную энергию Гельмгольца жидкости с потенциалом взаимодействия SW (твердая сфера плюс прямоугольная яма). В работе показано, что указанное свойство случайной величины Mλ позволяет с помощью общих подходов теории вероятностей (теорема Крамера или метод вероятности больших уклонений) провести усреднение этого функционала без разложения в ряд теории возмущения. Все математические величины, которые вводятся при доказательстве теоремы Крамера, имеют простой физический смысл и определяются термодинамическими характеристиками SW жидкости. Показано, что условия теоремы Крамера выполняются во всей области существования жидкости, кроме области критической точки.
В. П. Пахарукова1, Э. М. Мороз2, Д. А. Зюзин3 1 Институт катализа им. Г.К. Борескова СО РАН, Новосибирск, verapakh@catalysis.ru 2 Институт катализа им. Г.К. Борескова СО РАН, Новосибирск 3 Институт катализа им. Г.К. Борескова СО РАН, Новосибирск
Ключевые слова: радиальное распределение электронной плотности, высокодисперсные материалы, локальная структура, диоксид церия
Страницы: 288-294
Описан метод построения модельных кривых радиального распределения электронной плотности (РРЭП) по известным структурным данным с включением в него процедуры расчета волн обрыва, всегда возникающих на экспериментальной кривой РРЭП из-за ограничения пределов интегрирования при Фурье-преобразовании кривой рассеяния рентгеновских лучей. Введение такой процедуры повышает прецизионность сравнительного метода РРЭП, используемого для уточнения фазового состава нанодисперсных материалов и определения особенностей локальной структуры фаз по сравнению с их хорошо окристаллизованными аналогами. На примере образцов диоксида церия разной дисперсности показана возможность применения этого метода для определения особенностей локальной структуры.
С. С. Бацанов
Институт структурной макрокинетики и проблем материаловедения РАН, Черноголовка, batsanov@gol.ru
Ключевые слова: межатомное расстояние, фазовый переход, координационное число, порядок связи
Страницы: 295-300
Рассмотрены два подхода к описанию изменений длины связей в молекулах и кристаллах при изменении координационных чисел атомов, основанные на разнице или отношении межатомных расстояний при изменении структуры, и показано, что второй подход дает более точные результаты. Изменение межатомных расстояний в полярных соединениях имеет точно такой же характер как изменение ионных радиусов при вариации координационных чисел.
Д. Л. Чижов1, Е. Ф. Хмара2, П. А. Слепухин3, В. И. Филякова4, В. Н. Чарушин5 1 Институт органического синтеза им. И.Я. Постовского УрО РАН, Екатеринбург 2 Институт органического синтеза им. И.Я. Постовского УрО РАН, Екатеринбург, efkhmara@ios.uran.ru 3 Институт органического синтеза им. И.Я. Постовского УрО РАН, Екатеринбург 4 Институт органического синтеза им. И.Я. Постовского УрО РАН, Екатеринбург 5 Институт органического синтеза им. И.Я. Постовского УрО РАН, Екатеринбург
Ключевые слова: комплексы Ni(II), Pd(II), Cu(II), 1,2-бис(5,5,5-трифтор-4-оксопент-2-ен-2-амино)бензол, синтез, РСА
Страницы: 301-308
Методом РСА впервые структурно охарактеризованы новый фторсодержащий тетрадентатный лиганд 1,2-бис(5,5,5-трифтор-4-оксопент-2-ен-2-амино)бензол и его комплексы с Ni(II), Pd(II) и Cu(II). Установлено, что енаминокетонные фрагменты лиганда эквивалентны по величине длин связей и валентных углов, являются практически плоскими и развернуты на 51,3° в противоположные стороны относительно плоскости бензольного кольца. Структуры комплексов Ni(II), Pd(II) и Cu(II) подобны и имеют седловидную конфигурацию. Ионы металлов имеют плоскоквадратную координацию и находятся почти в центре квадрата N2O2. Средние расстояния M-N превышают M-О для комплексов Ni(II) и Cu(II) на 0,014 и 0,034 Å соответственно, тогда как для комплекса Pd(II) M-О больше, чем M-N, на 0,029 Å. Средний угол N-M-O хелатного центра в комплексах составляет: N-Ni-O 95,12°; N-Pd-O 95,68°; N-Cu-O 93,88°.
В. Н. Демидов1, С. А. Симанова2, А. И. Савинова3, А. В. Зинченко4, Т. Б. Пахомова5, Е. А. Александрова6 1 Санкт-Петербургский государственный технологический институт (технический университет), vndemidov@mail.ru 2 Санкт-Петербургский государственный технологический институт (технический университет) 3 Санкт-Петербургский государственный технологический институт (технический университет) 4 Санкт-Петербургский государственный технологический институт (технический университет) 5 Санкт-Петербургский государственный технологический институт (технический университет) 6 Санкт-Петербургский государственный технологический институт (технический университет)
Ключевые слова: комплексы палладия(II), 2,9-диметил-1, 10-фенантролин, молекулярная, кристаллическая структура
Страницы: 309-315
Для золотисто-оранжевого нейтрального комплекса палладия(II) с 2,9-диметил-1,10-фенантролином [Pd(2,9-Me2-phen)Cl2] представлены данные рентгеноструктурного анализа его монокристалла. Кристаллы [Pd(2,9-Me2-phen)Cl2] моноклинные, принадлежат к пространственной группе P21/n (a = 11,8670(7), b = 7,8195(5), c = 14,2418(9) Å, β = 92,5450(10)°, Z = 4, V = 1320,25 Å3, R-фактор = 2,89 %). Для комплекса [Pd(2,9-Me2-phen)Cl2] наблюдается сильное искажение обычной плоскоквадратной геометрической структуры с вытеснением центрального иона Pd2+ и двух хлоридных ацидолигандов из плоскости, в которой располагается координированный 2,9-диметил-1,10-фенантролин. Длины двух связей Pd-N несколько различны и равны 2,058 и 2,067 Å, длины связей Pd-Cl одинаковы и составляют 2,285 Å. Для самого 2,9-Me2-phen также имеет место некоторое искажение плоской геометрии с переходом молекулы в конформацию ванны. Кристаллическая структура комплекса [Pd(2,9-Me2-phen)Cl2] характеризуется наличием π-π-стэкинговых димеров, организованных в непрерывные скошенные стопки по типу стеллажирования.
И. В. Калинина1, М. Н. Соколов2, Е. В. Чубарова3, Е. В. Пересыпкина4, В. П. Федин5 1 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск 2 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск Новосибирский государственный университет, 630090 Новосибирск, ул. Пирогова, 2 3 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск 4 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск 5 Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск Новосибирский государственный университет, 630090 Новосибирск, ул. Пирогова, 2
Ключевые слова: молибден, вольфрам, сера, халькогенидный кластер, полиоксовольфрамат, арсенит, рентгеноструктурный анализ
Страницы: 316-321
Реакция лакунарного арсенитовольфрамата [AsW9O33]9- c [M3S4(H2O)9]4+ в водном растворе приводит к образованию комплекса [{Mo3S4(H2O)5}(H2AsW9O33)2]10-. Для соли состава Cs5,6K4,4[{Mo3S4(H2O)5}(H2AsW9O33)2]·19,15H2O (1) выполнен РСА. Аналогичная реакция [AsW9O33]9- с [W3S4(H2O)9]4+ и NaAsO2 приводит к [{W3S4(H2O)5}(H2AsW9O33)× (HAsW9O33AsOH)]9-. Кристаллическая структура определена для K6,35(NH4)2,65× [{W3S4(H2O)5}(H2AsW9O33)(HAsW9O33AsOH)]·23,7H2O (2). В структуре обоих соединений кластерные ядра {M3S4}4+ координированы одним бидентатно-мостиковым полиоксометаллатным лигандом, соединяющим два атома металла, и одним бидентатным полиоксометаллатным лигандом. Остальные пять координационных мест заняты молекулами воды. Комплексные анионы образуют димерные ассоциаты за счет водородных связей и контактов S…S.
А. О. Суров1, Г. Л. Перлович2 1 Учреждение Российской академии наук Институт химии растворов РАН, Иваново, aos@isc-ras.ru 2 Учреждение Российской академии наук Институт химии растворов РАН, Иваново, aos@isc-ras.ru
Ключевые слова: фенаматы, термодинамика сублимации, энергия кристаллической решетки, кристаллическая структура, рентгеноструктурный анализ, ДСК
Страницы: 322-330
Методом переноса инертным газом-носителем были получены температурные зависимости давлений паров и рассчитаны термодинамические функции процессов сублимации для семи молекулярных кристаллов, принадлежащих к группе нестероидных противовоспалительных средств: диклофенак, нифлюмовая, флюфенамовая, толфенамовая, мефенамовая, N-фенилантраниловая кислоты и дифениламин. Методом дифференциальной сканирующей калориметрии изучены процессы плавления выбранных веществ. Проанализированы рентгеноструктурные литературные данные для монокристаллов и проведена сравнительная характеристика с полученными нами термодинамическими и термофизическими параметрами процессов сублимации и плавления. Обнаружена корреляция между значениями энтальпии сублимации при стандартных условиях и температурой плавления. Изучено влияние различных заместителей на энергию кристаллической решетки данного класса соединений.
Л. А. Грибов1, В. А. Дементьев2 1 Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва 2 Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва, d_vasily@mail.ru
Ключевые слова: механохимия, волновые процессы, молекулярные наноструктуры
Страницы: 331-336
Приводятся примеры компьютерных экспериментов по распространению волновых движений в молекулярных наноструктурах. Обсуждаются некоторые закономерности диссипации и передачи энергии внутри молекулярных структур.
К. И. Шефер1, Д. А. Яценко2, С. В. Цыбуля3, Э. М. Мороз4, E. Ю. Герасимов5 1 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова СО РАН, Новосибирск, kristina.shefer@gmail.com 2 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова СО РАН, Новосибирск Новосибирский государственный университет, 630090 Новосибирск, ул.Пирогова,2 3 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова СО РАН, Новосибирск Новосибирский государственный университет, 630090 Новосибирск, ул.Пирогова,2 4 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова СО РАН, Новосибирск 5 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова СО РАН, Новосибирск
Ключевые слова: псевдобемит, гидроксид алюминия, структура, моделирование дифракционных картин, радиальное распределение электронной плотности
Страницы: 337-341
Методами моделирования дифракционных картин, радиального распределения электронной плотности и электронной микроскопии исследованы особенности структуры наноразмерного псевдобемита, полученного золь-гель методом. Показано, что он состоит из пластинчатых частиц толщиной в один период решетки в направлении [010]. Такое строение частиц псевдобемита приводит к отсутствию дифракционного пика 020 на дифракционной картине.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее