Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 2880
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [PASSWORD_CHECK_WEAK] => N
                    [PASSWORD_CHECK_POLICY] => N
                    [PASSWORD_CHANGE_DAYS] => 0
                    [PASSWORD_UNIQUE_COUNT] => 0
                    [LOGIN_ATTEMPTS] => 0
                    [BLOCK_LOGIN_ATTEMPTS] => 0
                    [BLOCK_TIME] => 0
                )

        )

    [SESS_IP] => 3.144.89.53
    [SESS_TIME] => 1743551640
    [IS_EXPIRED] => 
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [SESS_SHOW_INCLUDE_TIME_EXEC] => 
    [fixed_session_id] => 7574cf27542fb7b09d609415980d9c21
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

    [SESS_OPERATIONS] => Array
        (
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2023 год, номер 3

1.
Безынтерполяционный LBM на неравномерных сетках

А.В. Березин1,2, А.В. Иванов1, А.Ю. Перепёлкина1
1Институт прикладной математики им. М.В. Келдыша Российской академии наук, Москва, Россия
arsenbrs@mail.ru
2Национальный исследовательский ядерный университет «МИФИ», Москва, Россия
Ключевые слова: метод решёточных уравнений Больцмана, масштабирование решётки, перекалибровка популяций LBM, перекалибровка моментами
Страницы: 235-252

Аннотация >>
Метод решёточных уравнений Больцмана (LBM) - это численная схема решения задач гидрогазодинамики. Одним из важных и развивающихся направлений LBM является корректное построение такой схемы на неравномерных пространственных решётках, которые позволяют значительно снизить общее число вычислений. Однако на текущий момент построение схемы LBM вблизи границы решёток с разным пространственным шагом неизбежно влечёт за собой необходимость интерполяции данных, что может снизить порядок аппроксимации LBM и привести к нарушению законов сохранения. В работе впервые разработан и протестирован безынтерполяционный метод построения атермического узлового LBM на неравномерных решётках с единым шагом по времени для сеток разного масштаба, основанный на двухступенчатой процедуре перекалибровки популяций, отвечающих разным шаблонам.

DOI: 10.15372/SJNM20230301
EDN: GIDKAA
Добавить в корзину
Товар добавлен в корзину


2.
Моделирование методом Монте-Карло сигнала лазерной навигационной системы

Е.Г. Каблукова1,2, В.Г. Ошлаков3, С.М. Пригарин1,2
1Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия
kablukovae@sscc.ru
2Новосибирский национальный исследовательский государственный университет (НГУ), Новосибирск, Россия
smp@osmf.sscc.ru
3Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук, Томск, Россия
oshlakov@iao.ru
Ключевые слова: перенос излучения, метод Монте-Карло, многократное рассеяние, лазерная навигационная система
Страницы: 253-261

Аннотация >>
Разработаны алгоритмы статистического моделирования сигнала, регистрируемого фотоприёмником лазерной навигационной системы, предназначенной для безопасной посадки воздушных судов. Методом Монте-Карло оцениваются мощность и угловые распределения излучения, регистрируемого приёмником, а также анализируется влияние рассеяния различной кратности на регистрируемый сигнал. Проведённые вычисления показывают, что предлагаемые алгоритмы позволяют оценить эффективность работы лазерной навигационной системы в различных условиях.

DOI: 10.15372/SJNM20230302
EDN: DEINXN
Добавить в корзину
Товар добавлен в корзину


3.
Метод коллокации для уравнения КдФ-Кавахары на основе тригонометрического базиса B-сплайнов пятой степени

Б. Караагац1, А. Эсен2, К.М. Оволаби3, Е. Пиндза4,5
Ключевые слова: уравнение КдФ-Кавахары, метод коллокации, тригонометрический базис B-сплайнов пятой степени, устойчивость
Страницы: 263-276

Аннотация >>
В данной работе рассматривается эффективный численный метод - метод коллокации - для получения численных решений уравнения КдФ-Кавахары. Численный метод основан на конечно-элементной формулировке и сплайн-интерполяции на основе тригонометрического базиса B-сплайнов пятой степени. Сначала уравнение КдФ-Кавахары распадается на связанное уравнение с использованием вспомогательной переменной вида υ=uxxx. Затем метод коллокации применяется к связанному уравнению вместе с разностью вперед и формулой Кранка-Николсона. Благодаря этому мы получаем систему алгебраических уравнений в терминах переменных времени и на основе тригонометрического базиса B-сплайнов пятой степени. Для определения ошибки между численным и точным решениями вычисляются нормы ошибки L2 и L. Результаты иллюстрируются на двух численных примерах с их графическим представлением и сравнением с другими методами.

DOI: 10.15372/SJNM20230303
EDN: CRCLFM
Добавить в корзину
Товар добавлен в корзину


4.
Исследование суперэкспоненциального роста среднего потока частиц методом Монте-Карло

Г.З. Лотова1,2, Г.А. Михайлов1,2
1Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия
lot@osmf.sscc.ru
2Новосибирский национальный исследовательский государственный университет (НГУ), Новосибирск, Россия
gam@sscc.ru
Ключевые слова: статистическое моделирование, асимптотика по времени, случайная среда, поток частиц, поле Вороного
Страницы: 277-285

Аннотация >>
На решении тестовой задачи для односкоростного процесса переноса частиц с изотропным рассеянием и размножением в стохастической среде проводится сравнительный анализ двух алгоритмов оценки взвешенного среднего потока частиц: по частицам и по столкновениям. Показано, что первый из них предпочтительнее для простой оценки среднего потока, а второй - для оценки параметров возможного суперэкспоненциального роста потока. Рассматриваются две модели случайной среды: хаотическая «мозаика Вороного» и сферически «слоистая мозаика». При одинаковом среднем корреляционном радиусе для слоистой мозаики суперэкспоненциальный рост оказался более сильным.

DOI: 10.15372/SJNM20230304
EDN: OEWIBN
Добавить в корзину
Товар добавлен в корзину


5.
Вычисление функции плотности распределения вероятности фаз на основе решения обратной задачи

М.Л. Маслаков1,2, В.В. Егоров1,2
1АО «Российский институт мощного радиостроения», Санкт-Петербург, Россия
maslakovml@gmail.com
2Санкт-Петербургский Государственный университет аэрокосмического приборостроения
egorovrimr@mail.ru
Ключевые слова: угловые измерения, фаза, плотность распределения фаз, ряд Фурье, обратная задача, регуляризация
Страницы: 287-300

Аннотация >>
В работе рассматривается задача вычисления плотности распределения вероятности фазы сигнала с фазовой манипуляцией, принимаемого в условиях искажений и аддитивного шума. Данная задача сводится к решению обратной задачи, а именно интегральному уравнению типа свертки. В работе проанализированы функции, входящие в интегральное уравнение. Отдельно рассмотрен важный с практической точки зрения случай равновероятных фаз символов. Представлены результаты численного моделирования

DOI: 10.15372/SJNM20230305
EDN: MKJCPX
Добавить в корзину
Товар добавлен в корзину


6.
Метод уточнения суммы в итерационной схеме, адаптированной для линейной системы интегральных уравнений, для приближения решения интегрального уравнения Фредгольма

М.Г. Махсин1, А. Хеллаф2,3, С. Лемита4,3, М.З. Аиссаоуи1
Ключевые слова: интегральные уравнения, ограниченные линейные операторы, итерационные методы, метод Нистрема
Страницы: 301-312

Аннотация >>
Используя теорему о геометрических рядах, мы преобразуем линейное интегральное уравнение Фредгольма второго рода, определенное на большом интервале, в эквивалентную линейную систему интегральных уравнений Фредгольма второго рода. Затем мы уточняем, как исследуемая обобщенная итерационная схема аппроксимирует искомое решение. Не обращая ограниченный линейный оператор, а вместо этого вычисляя усеченную геометрическую сумму связанной с ним последовательности ограниченных линейных операторов, мы замечаем, что наш подход обеспечивает лучшую эффективность с точки зрения времени вычислений и наличия ошибок.

DOI: 10.15372/SJNM20230306
EDN: ZEIJUS
Добавить в корзину
Товар добавлен в корзину


7.
Априорные границы ошибки для параболических интерфейсных задач с данными измерений

Гупта Дж. Сен
Ключевые слова: параболические интерфейсные задачи, пространственно дискретная и полностью дискретная конечно-элементные аппроксимации, априорный анализ ошибок, данные измерений
Страницы: 313-330

Аннотация >>
В данной статье рассматривается априорный анализ ошибок для линейных параболических интерфейсных задач с данными измерений во времени в ограниченной выпуклой многоугольной области в R2. Анализируются как пространственно дискретные, так и полностью дискретные аппроксимации. Мы используем стандартную непрерывную дискретизацию методом конечных элементов для пространства, в то время как для дискретизации по времени используется неявная аппроксимация Эйлера. Ввиду низкой регулярности данных задачи решение имеет очень низкую регулярность во всей области. Априорные границы ошибки в L2(L2(Ω))-норме как для пространственно дискретной, так и для полностью дискретной конечно-элементных аппроксимаций получаются при минимальной регулярности с помощью L2-проекционного оператора и двойственности. Для подтверждения теоретических выводов были проведены численные эксперименты. Для нашей цели предполагается, что интерфейсы гладкие.

DOI: 10.15372/SJNM20230307
EDN: KOHOER
Добавить в корзину
Товар добавлен в корзину


8.
Решение обратной граничной задачи теплообмена для полого цилиндра

А.И. Сидикова1, А.С. Сушков2
1Южно-Уральский государственный университет, Челябинск, Россия
sidikovaai@susu.ru
2Челябинский государственный университет, Челябинск, Россия
mesocyclon@yandex.ru
Ключевые слова: оценка погрешности, преобразование Фурье, некорректная задача
Страницы: 331-344

Аннотация >>
В статье решается задача об определении температуры на внутренней стенке полого цилиндра. При помощи преобразования Фурье по времени задача сведена к обыкновенному дифференциальному уравнению, с помощью которого был найден Фурье-образ точного решения искомой обратной граничной задачи. Для применения преобразования Фурье по времени искомое решение было умножено на e-t и сведено к двум некорректным задачам. В работе рассмотрен метод проекционной регуляризации, позволяющий получить устойчивое решение задачи, а также получена точная по порядку оценка погрешности приближенного решения.

DOI: 10.15372/SJNM20230308
EDN: HSMOFR
Добавить в корзину
Товар добавлен в корзину