Эволюцию биосферы можно представить в виде процессов 1) возникновения новых экологических специализаций (гильдий), обеспечивающих более высокую эффективность использования, передачи и трансформации вещества и энергии в экосистемах; 2) пространственной экспансии жизни на Земле (постепенного преобразования дискретной биосферы в континуульную путем освоения новых биономических зон и биотопов); 3) усложнения трофической структуры экосистем (от простейших автотрофно-гетеротрофных прокариотных экосистем архея до современной глобальной экосистемы Земли); 4) изменений пространственных и энергетических параметров биогеохимических круговоротов. С этих позиций ордовикский период может рассматриваться как один из крупнейших переломных этапов в эволюции биосферы. За счет появления новых таксономических групп с более эффективными трофическими адаптациями (экологических гильдий) в бентосных сообществах и освоения гетеротрофными организмами (специализированными группами зоопланктона и нектона) пелагиали в эвфотических зонах морей, в ордовикском периоде произошли кардинальные изменения в морских экосистемах, предопределившие дальнейшую эволюционную стратегию морских биот. Главная эволюционная стратегия морских организмов докембрия – повышение эффективности адаптаций к физико-химическим условиям среды путем усложнения биологической организации и разделения метаболических и репродуктивных функций на внутриорганизменном уровне. Начиная с раннего кембрия, когда возникли основные типы морских беспозвоночных и впервые начали формироваться сетевые (многоступенчатые) трофические взаимоотношения между автотрофными и гетеротрофными организмами с разделением экологических функций, адаптации к биотической среде становятся таким же важным звеном эволюционного процесса, как и приспособления к абиотическим условиям. Начиная с ордовикского периода в связи с постепенной стабилизацией абиотической среды в морских бассейнах экологические механизмы взаимодействия организмов становятся определяющим фактором эволюционной стратегии сообществ. В ордовике впервые в массовом количестве появились и, начиная со среднего ордовика, достигли максимального расцвета новые группы эдификаторных организмов – замковые брахиоподы, прикрепленные колониальные (табуляты, ругозы, хелиолитиды, строматопораты), агрегационные (криноидеи) и колониально-агрегационные (мшанки) организмы с фильтраторным типом питания и каркасным скелетом, что обусловило дробление биотопов, усложнение и гетерогенное распределение трофических потоков. На низшем трофическом уровне доминирующее положение заняли остракоды – первые мелкомерные гидробионты с универсальной экологической валентностью, способные выполнять роль разных звеньев трофических цепей. Вместо прежних илоедов (преимущественно трилобитов) стали доминировать фильтраторы и трофические универсалы (остракоды), которые были способны обеспечивать более глубокую трансформацию органического вещества. В ордовике впервые пелагиаль стала постоянной (вместо прежней факультативной) сферой жизни зоопланктона и нектонных организмов: граптолитов, радиолярий, конодонтофорид, наутилоидей, меропланктона (главным образом, личиночных стадий колониальных организмов и брахиопод), пелагических форм трилобитов, остракод и первых примитивных рыб. В ордовике произошла пространственная передислокация начального звена трофических систем – основных продуцентов, что кардинально повлияло на ярусную и латеральную структуру трофических цепей. До начала среднего ордовика главными фотосинтезирующими продуцентами наряду с фитопланктоном были донные цианобактериальные сообщества или луга (маты), исключительно широко распространенные в эпиконтинентальных морях позднего докембрия и раннего палеозоя. На рубеже раннего и среднего ордовика площади распространения таких лугов резко сокращаются и в дальнейшем главным продуцентом становиться фитопланктон. Глобальная экологическая перестройка сопровождалась самым крупномасштабным в фанерозойской истории биосферы взрывным ростом биоразнообразия в морских биотах ордовика, за которым последовала его быстрая стабилизация. В дальнейшем эта стабильность поддерживалась ротацией (филогенетическими последовательностями) экологически эквивалентных таксонов, которая на кризисных рубежах дополнялась селективной заменой отдельных экологических гильдий. Таким образом, в ордовике морские экосистемы стали многоярусными, резко усложнилась их трофическая структура и впервые сформировался глобальный замкнутый биогеохимический цикл в пределах всей морской акватории. Глобальные биотические события ордовикского периода хронологически совпадают с такими же крупномасштабными геологическими событиями (резкими изменениями климата, максимальным диапазоном периодического расширения и сокращения эпиконтинентальных морей, изменением баланса Mg и Ca в морском осадкообразовании, увеличением количества кислорода в атмосфере и гидросфере и формированием озонового экрана Земли). Предполагается, что возникновение в ордовике озонового экрана и увеличение количества растворенного кислорода в морской воде оказало решающее влияние на заселение гетеротрофными организмами пелагиали и формирование когерентных (экологически насыщенных) бентосных экосистем. На начальном, метастабильном этапе становления озонового экрана резкие флуктуации биоразнообразия в донных и пелагических сообществах определялись кардинальными изменениями пространственных параметров морских шельфов как главной сферы жизни в связи с эвстатическими колебаниями уровня мирового океана. Позднеордовикское вымирание морских биот было следствием катастрофического сокращения жизненного пространства на шельфах в результате понижения уровня мирового океана за счет связывания больших объемов воды в материковых ледниках, которое наступило после среднеордовикского трансгрессивного максимума.
Изучение теплых (безледниковых) эпох позднего мела и раннего триаса показало, что в геологической истории существовали гумидные и аридные состояния теплых биосфер. Они довольно сильно различались между собой своими палеогеографическими и седиментационными особенностями, а также климатической зональностью. В позднем мелу доминировали гумидные пояса, которые охватывали до 75 % суши. Основными причинами гумидности климата были, во-первых, раскрытие новых океанов, обширная трансгрессия и образование крупных шельфовых и эпиконтинентальных морей, во-вторых, небольшие размеры массивов суши и их орографические особенности, выражавшиеся в существовании низменных пенепленизированных внутриконтинентальных областей. Глобальное распространение теплого гумидного климата в позднем мелу предопределялось также широтным океаном Тетис с циркумглобальными западными течениями в тропических широтах Северного полушария. Раннетриасовая эпоха отличалась преобладанием засушливого климата. Аридные и семиаридные пояса занимали до 80 % суши. Аридность климата в раннем триасе предопределялась существованием огромной суши Пангеи, ее высоким гипсометрическим стоянием, наличием краевых и внутриконтинентальных горных систем, а также высоких плато и бессточных областей между ними. Анализ биологических, геохимических и геологических последствий гумидизации и аридизации климата Земли может способствовать лучшему пониманию биотических, геохимических и геологических последствий этих процессов, а также геологического прошлого и будущего и позволит детализировать климатическую периодизацию геологической истории.
В статье приводится описание спор и пыльцы ряда разрезов моренных, озерных, озерно-ледниковых отложений последнего позднечетвертичного (сартанского) оледенения. Дано описание трех типов растительных формаций (перигляциального, арктического (тундростепного) и субарктического (лесотундрового) для максимума (20-18 тыс. лет) оледенения. На основании изучения разреза близ г. Колпашево (Средняя Обь) и радиоуглеродных дат, приведено описание палинологических зон с количественными оценками содержания спор и пыльцы. Показана миграция растительных зон. Южная граница тундровой растительности в максимум похолодания была смещена относительно современного положения на 10-11o. Наиболее сильные преобразования претерпела территория бореально-таежной зоны. Практически на этой территории лесов не было. Среднегодовая температура в максимум оледенения была ниже современной на 8-10o. Осадков выпадало на 300 мм меньше на территории современной лесной области, а к югу от 54o отклонения составляли более 400 мм. Южная граница криолитозоны располагалась за пределами Западной Сибири, в Казахстане. Подчеркивается, что в случае понижения температур и сильного похолодания (оледенения) произойдут глубокие преобразования растительной биоты.
На геодинамической основе рассмотрены палеогеографические позиции бассейнов, в которых происходило накопление осадков, обогащенных органическим веществом ("черносланцевые" фации) для трех эпох девонского периода. Кратко охарактеризованы "черносланцевые формации" (свиты, пачки, горизонты) и положение зон их накопления в ситеме расположения бассейнов и в циклах осадкообразования. Намечена эволюция геологических позиций этих зон, их зависимость от расположения континентов и последовательности трансгрессивных эпизодов. В раннедевонскую эпоху – при относительно близком расположении континентов - бассейны черносланцевой седиментации тяготеют к их краевым частям, располагаясь в области перехода от мелководья к пелагиали. В среднедевонскую этот порядок размещения дополняется предорогенными зонами, и черносланцевые формации формируются в более мелководных обстановках по сравнению с раннедевонскими. В позднедевонскую эпоху расширяются площади шельфов, количество "черносланцевых" зон существенно увеличивается вместе с увеличением занимаемых ими площадей. В стратиграфических разрезах "черносланцевые" фации занимают средние части циклов осадконакопления – наиболее трансгрессивные и погруженные.
В работе дана генетическая характеристика осадочных бассейнов и предложены физические механизмы их образования. Последние связываются с мантийной конвекцией и диапиризмом, которые обусловливают вертикальные и горизонтальные тектонические движения, формирующие осадочные бассейны.
Наиболее высокие и протяженные горные хребты Восточной Якутии располагаются по периферии горной страны и включают Верхоянскую систему хребтов на западе и систему хребтов Черского и Момского на востоке. К северу горные хребты сменяются Приморской низменностью, которая переходит в шельф моря Лаптевых, отделенный уступом континентального склона от Евразийского океанического бассейна. Верхоянская система хребтов представляет собой асимметричный свод, осложненный более поздними сбросами. Система хребтов Черского и Момского также представляет собой свод, рассеченный продольными рифтовыми впадинами (Момская, Верхнеселенняхская и др.). Анализ разрезов кайнозойских отложений во впадинах, примыкающих к горным хребтам, указывает, что усиленный рост поднятий начался в олигоцене. Формирование сводовых поднятий в позднем миоцене-начале плиоцена сопровождалось резким эпизодом сжатия с образованием систем чешуйчатых надвигов, перемещения по которым достигают нескольких километров. Поздний плиоцен-ранний плейстоцен является временем общего растяжения земной коры Восточной Якутии. В это время формируются Момский рифт и сбросы Верхоянского хребта. Формирование горных хребтов Восточной Якутии связывается с взаимодействием Евразийской и Северо-Американской литосферных плит в кайнозое и раскрыттием Евразийского океанического бассейна в Арктике. В течение кайнозоя полюс вращения плит несколько раз менял свое положение и этим объясняется чередование эпох растяжения и сжатия, устанавливаемых на территории Восточной Якутии. Намечается синхронность главных геодинамических событий, связанных с раскрытием Евразийского бассейна и формированием горных хребтов Восточной Якутии.
В статье показано, что закономерности, присущие различным этапам формирования геологических структур, проявляются во временной динамике поля силы тяжести. Изучены закономерности изменения гравитационного поля в истории геологического развития земной коры Беларуси. Для этого была создана последовательность плотностных моделей среды, отражающих основные этапы тектонического развития: ранний архей-поздний архей-ранний протерозой-рифей-венд-поздний палеозой (девон-карбон), вычислены им соответствующие гравитационные поля и дана их геологическая интерпретация.
Предложена модель формирования современной структуры зоны сочленения Сибирской платформы и Западно-Сибирской плиты, учитывающая имеющиеся на настоящее время геологические и геофизические факты. В истории формирования выделяются пять этапов. На первом (раннесреднерифейском) этапе на континентальной коре Сибирской платформы и Касском микроконтиненте, отодвинувшимся в начале рифея от Северо-Азиатского кратона, формировался осадочно-вулканогенный комплекс, а между ними существовал бассейн с океанической корой. Второй этап (на рубеже 850 млн лет) обусловлен коллизией Касского микроконтинента, в результате которой океанические образования обдуцированы на край Сибирской платформы, смяты и метаморфизованы. Третий этап (с байкальского времени до позднего карбона), когда на всей территории региона формируется терригенно-карбонатно-эвапоритовый плитный комплекс. Четвертый этап (рубеж позднего карбона-раннего триаса), связанный с закрытием Палеоазиатского океана, выразился в коллизионных явлениях на западной окраине Касского массива. В течение пятого (мезозойско-кайнозойского) этапа на левобережье Енисея формируется плитный комплекс Западно-Сибирской плиты, а Енисейский кряж и прилегающие части Сибирской платформы развиваются в режиме воздымания.
Представлены результаты исследования характеристик модельного гиперзвукового прямоточного воздушно-реактивного двигателя (ГПВРД) с трехмерным воздухозаборником в новой аэродинамической трубе с адиабатическим сжатием АТ 303, недавно созданной в Институте теоретической и прикладной механики СО РАН. Установка работает в диапазоне чисел Маха набегающего потока М = 8 – 20 и позволяет воспроизводить числа Рейнольдса Re1 в диапазоне от 3,6 106 до 108 1/м – значения, близкие к натурным. Испытания модели проведены при числе Маха М 8 как без подвода горючего в камеру сгорания, так и с подачей газообразного водорода. Измерены распределения давления и тепловых потоков вдоль основного клина сжатия воздухозаборника и всего двигательного тракта с целью исследования возможного влияния числа Рейнольдса на течение в ГПВРД в широком диапазоне Re1 от 2,7 106 до 4 107 1/м в условиях обтекания модели с естественным развитием пограничного слоя. При подаче водорода реализованы режимы с его самовоспламенением. Результаты экспериментов показали, что в течение кратковременного рабочего режима трубы (50 – 60 мс) в модельном двигателе сначала формируется режим горения при сверхзвуковой скорости на входе в камеру сгорания и с подводом тепла к потоку, в среднем сверхзвуковому, а затем развивается режим горения с подводом тепла за псевдоскачком в воздухозаборнике при критических условиях запирания потока на выходе участка камеры сгорания с постоянной площадью поперечного сечения.
В диапазоне скоростей потока от малых дозвуковых до предкритических выполнены численно-аналитические и экспериментальные исследования обтекания моделей симметричного крылового профиля с акцентом на выявление роли сжимаемости среды. Показано, что для тел хорошо обтекаемой формы, относительная толщина которых не превышает 12 %, нет оснований считать, что эффект сжимаемости, по крайней мере, до чисел Маха М = 0,15 сколько-нибудь существен. При этом, однако, обнаружены заметные различия данных в окрестности передней кромки крылового профиля, обусловленные допущением малости возмущений, которое в большинстве анализируемых методов не является справедливым. Кроме того, вследствие неодинаковой точности предсказания результатов на различных участках обтекаемой поверхности, коэффициент сжимаемости, по-видимому, не может приниматься лишь в виде функции числа Маха для всей области исследуемого течения, как это считается в ряде классических подходов.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее