Проведено численное моделирование процессов радиационного теплопереноса в огненном шаре, образующемся при зажигании облака углеводородного топлива вблизи поверхности земли. Для описания излучательных характеристик продуктов горения (смеси двуокиси азота, водяного пара и сажи) использована модель взвешенной суммы серых газов с весовыми коэффициентами, зависящими от температуры. Расчет поля излучения в огненном шаре для индивидуальных серых газов проводится на основе либо диффузионного приближения (газы, для которых огненный шар является оптически толстым), либо приближения объемного высвечивания (газы, для которых огненный шар оптически тонкий). Представлены результаты расчетов пропановых огненных шаров с массой топлива от 1 г до 103 кг. На основе сопоставления пространственных распределений радиационного источникового члена для огненных шаров разных размеров продемонстрирована роль масштабных эффектов. Показано, что излучение горящих облаков малого масштаба происходит равномерно по объему, тогда как огненные шары большого масштаба излучают преимущественно с поверхности. Полученная в расчетах доля энергии, переходящей в излучение, хорошо согласуется с литературными данными. Радиационное поле вне огненного шара и потоки на поверхность рассчитаны методом Монте - Карло. Определена доза энергии, падающей на поверхность за время горения огненного шара.
Изложены результаты исследований горения в каналах, связанных с явлениями, аномальными для установившихся в среднем турбулентных потоков: нестационарность тепловыделения, двухслойность течения, колебания столба газа различной интенсивности и частоты. При некоторых условиях такие явления приводят к значительным перераспределениям энтальпии и давления торможения на выходе из камеры сгорания, что существенно сказывается на интегральных характеристиках камеры сгорания.
Рассматриваются результаты численного моделирования процессов течения и горения предварительно перемешанной газовой смеси в цилиндрическом канале при внезапной закрутке потока и внезапном ее прекращении. Проведенные расчеты показывают, что закрутка потока позволяет локализовать пламя в заданном объеме камеры сгорания и является эффективным способом управления процессом горения.
Изложены результаты экспериментального исследования газификации углерода двуокисью углерода в диапазоне температур 10731373 К. Использован метод неустановившейся импульсной кинетики, который позволяет определить число реакционных центров углерода и тем самым истинное значение скорости газификации и кинетических констант.
Рассматривается зажигание твердого топлива в воде с помощью негерметичной системы зажигания в виде сквозного канала с установленной в нем спиралью накаливания. Функционирование системы зажигания основано на принципе создания кризисных условий кипения воды в канале при подводе к ней тепла от электрического нагревателя. Визуально установлено, что разогреву стенок предшествует подготовительный период, связанный с изменением агрегатного состояния воды. Система опробована на образцах твердого топлива.
На основе приближенного и численного решений задачи о зажигании конденсированного вещества проволочкой, накаливаемой постоянным током, проанализировано влияние электрофизических свойств и геометрических размеров проводника, а также теплокинетических характеристик твердого топлива на время задержки. Полученные данные удовлетворительно согласуются с экспериментальными результатами. Итоги параметрического анализа обобщены интерполяционной зависимостью.
Представлены результаты экспериментального исследования влияния тугоплавкого инертного наполнителя на термокинетические параметры высокотемпературного синтеза интерметаллида Ni3Al в режиме теплового взрыва порошковой смеси чистых элементов.
Б. С. Сеплярский, Т. П. Ивлева, *Е. А. Левашов
"Институт структурной макрокинетики и проблем материаловедения РАН, 142432 Черноголовка *Исследовательский центр СВС Института стали и сплавов, 117936 Москва"
С помощью методов математического моделирования исследована тепловая и концентрационная структура фронта горения в двухслойных образцах. Определены пределы горения по теплопотерям при различных тепловых эффектах и теплофизических характеристиках слоев. Показано, что повышение температуры среды, в которую помещен образец, является эффективным способом управления процессом горения. Установлено, что для значений определяющих параметров, используемых в расчетах, повышение температуры на один характерный интервал Tenv,1 = Tin + RT2b,1/E (Tin – начальная температура образца, Тb,1 – температура горения неразбавленного слоя) увеличивает критическое значение коэффициента теплопотерь более чем в двадцать раз.
Описал принцип работы газогенератора, заключающийся в сжигании пористого заряда твердого топлива в режиме фильтрации газообразных продуктов сгорания к холодному торцу, в направлении перемещения фронта горения.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее