"Б. Н. Дудкин1, И. В. Лоухина1, Е. Г. Аввакумов2, В. П. Исупов2"
"1Институт химии Уральского отделения РАН, ул. Первомайская, 48, Сыктывкар 167982 (Россия) E-mail: dudkin-bn@сhemi.komisc.ru 2Институт химии твердого тела и механохимии Сибирского отделения РАН, ул. Кутателадзе, 18, Новосибирск 630128 (Россия) E-mail: isupov@solid.nsk.su"
Страницы: 327-330
Показано, что совместная механохимическая обработка (СМХО) смеси каолинита и серной кислоты может быть использована для извлечения алюминия из слоистых алюмосиликатов. Методом рентгенофазового анализа установлено образование кристаллогидрата сульфата алюминия в продуктах СМХО каолинита. Изучено влияние СМХО каолинитов в аппаратах с различным уровнем подводимой энергией на степень извлечения алюминия в жидкую фазу. Наибольшая степень извлечения алюминия достигнута в центробежно-планетарной мельнице АГО-2.
"Н. В. Еремина1, В. Ю. Зелинский2, Е. Г. Аввакумов1"
"1Институт химии твердого тела и механохимии Сибирского отделения РАН, ул. Кутателадзе 18, Новосибирск 630128 (Россия) E-mail: eremina@solid.nsk.su 2ТОО "Корунд Ltd", ул. Ушанова, 104, Усть-Каменогорск 492021 (Казахстан)"
Страницы: 331-337
Разработаны состав и способ получения огнезащитной композиции на основе жидкого стекла и оксида алюминия. Обнаружено положительное влияние механической активации оксида алюминия на свойства композиции как результат изменения фазового состава, строения и реакционной способности оксидного порошка. Предложена технологическая схема получения композиции.
К. Г. Королев, О. И. Ломовский, Н. Ф. Уваров, В. Л. Саленко
"Институт химии твердого тела и механохимии Сибирского отделения РАН, ул. Кутателадзе, 18, Новосибирск 630128 (Россия) Е-mail: issc@solid.nsc.ru"
Страницы: 339-348
Изучены превращения, протекающие при механохимической обработке кристаллических аномеров D-глюкозы. Установлено, что твердая органическая кислота или твердый неорганический амфолит (NaHCO3) являются эффективными катализаторами твердофазной аномеризации D-глюкозы. Показано, что механическая активация в присутствии твердой органической кислоты приводит к образованию продуктов димеризации D-глюкозы. Наибольшей реакционной способностью в реакциях твердофазной аномеризации и димеризации обладает b-D-глюкоза. Различие в реакционной способности двух кристаллических аномеров объясняется наличием у b-аномера эффективного механизма переноса протонов. В отличие от a-D-глюкозы b-аномер обладает электрической проводимостью, которая для этого класса веществ, скорее всего, обусловлена переносом протонов. Электрическая проводимость кристаллической b-D-глюкозы зависит от степени дефектности и коррелирует со скоростью реакции механохимической аномеризации.
Н. В. Косова, Е. Т. Девяткина
"Институт химии твердого тела и механохимии Сибирского отделения РАН, ул. Кутателадзе, 18, Новосибирск 630128 (Россия) E-mail: kosova@solid.nsc.ru"
Страницы: 349-354
Исследован синтез ряда катодных материалов для литий-ионных аккумуляторов с применением механической активации. Показано, что полученные материалы характеризуются субмикронным размером частиц и наличием структурного разупорядочения. Установлено, что это оказывает положительное влияние на электрохимические свойства катодов внедрения (например, LiMn2O4-3 В, LiV3O8-3 В, Li3Fe2(PO4)3-2.8 В), а также катодов, обладающих низкой электронной проводимостью (например, LiFePO4-3.4 В). Высокая дисперсность способствует увеличению практической емкости за счет более полного использования объема частиц, а также проведению процесса внедрения/экстракции ионов лития в кинетическом режиме, что важно для создания быстродействующих аккумуляторов. Положительное влияние структурной разупорядоченности состоит в большей стабильности дефектных структур к процессам внедрения ионов лития и, как следствие, лучшей циклируемости.
"О. И. Ломовский1, А. А. Иванов2, О. А. Рожанская3, Н. В. Юдина2, К. Г. Королев1"
"1Институт химии твердого тела и механохимии Сибирского отдлеления РАН, ул. Кутателадзе, 18, Новосибирск 630128 (Россия) Е-mail: lomov@solid.nsc.ru 2Институт химии нефти Сибирского отделения РАН, проспект Академический, 3, Томск 634055 (Россия) 3Сибирский НИИ кормов Сибирского отделения РАСХН, Новосибирская обл., пос. Краснообск 630501 (Россия)"
Страницы: 355-361
Изучено изменение состава и свойств водорастворимых компонентов торфа при механохимической обработке. Установлено, что механохимическая обработка влияет на состав, количественное содержание и биологическую активность водорастворимых компонентов торфа. Механохимическая обработка верхового торфа с целловиридином и щелочью приводит к увеличению выхода водорастворимых кислородсодержащих соединений, в том числе гуминовых кислот. Минеральный состав торфа после обработки практически не изменяется. Показано, что водорастворимые компоненты, полученные механохимическим методом, стимулируют прорастание семян и развитие проростков пшеницы на ранних стадиях вегетации.
"С. Г. Мамылов1, О. И. Ломовский1, В. А. Солошенко2"
"1Институт химии твердого тела и механохимии Сибирского отделения РАН, ул. Кутателадзе, 18, Новосибирск 630128 (Россия) E-mail: mamylov@solid.nsc.ru 2Научно-исследовательский и проектно-технологический институт животноводства Сибирского отделения РАСХН, а/я 470, Новосибирская обл., пос. Краснообск 630501 (Россия)"
Страницы: 363-370
Исследован процесс растворения кормовых азотсодержащих добавок на основе карбамида, зерна и наполнителя, полученных механохимическим способом. Образцы изготавливались механическим смешением, обработкой в экструдере, планетарных и центробежных мельницах-активаторах. Изменение в составе добавки содержания зерна и наполнителя (солома, жиры, бентонит) может служить эффективным способом регулирования скорости выделения карбамида из кормовых добавок. По критериям отбора, исходящим из требования максимально допустимого нарушения внутренней среды организма (кислотности) при усвоении добавки животным, выбраны условия механохимического получения кормовой добавки. Испытаниями на животных показана перспективность применения механохимически получаемых карбамидсодержащих добавок.
"М. А. Михайленко1,2, Т. П. Шахтшнейдер2,3, В. В. Болдырев1,2,3"
"1Новосибирский государственный университет, ул. Пирогова, 2, Новосибирск 630090 (Россия) E-mail: boldyrev@nsu.ru 2Научно-образовательный центр "Молекулярный дизайн и экологически безопасные технологии" при Новосибирском государственном университете, ул. Пирогова, 2, Новосибирск 630090 (Россия) 3Институт химии твердого тела и механохимии Сибирского отделения РАН, ул. Кутателадзе, 18, Новосибирск 630090 (Россия) E-mail: mikhailenko@solid.nsc.ru"
Страницы: 371-378
Работа посвящена вопросу участия флюидных фаз в механохимическом синтезе фталилсульфатиазола. Модельные оптико-микроскопические эксперименты на кристаллических образцах выявили возможность взаимодействия сульфатиазола и фталевого ангидрида без их непосредственного контакта при температурах порядка 100 °С. Методом сканирующей калориметрии показано смещение температуры синтеза в низкотемпературную область при механической активации реагентов. Выявлено отсутствие сплавления реагентов в условиях механической активации. Выдвинуто предположение о транспорте фталевого ангидрида через газовую фазу как наиболее вероятном механизме синтеза в механохимическом реакторе.
"К. А. Тарасов1, 2, В. П. Исупов1, Б. Б. Бохонов1, A. Е. Ермаков3"
"1Институт химии твердого тела и механохимии Сибирского отделения РАН, ул. Кутателадзе, 18, Новосибирск 630128 (Россия) E-mail: tarasov@solid.nsk.su 2Новосибирский государственный университет, ул. Пирогова, 2, Новосибирск 630090 (Россия) 3Институт физики металлов Уральского отделения РАН, ул. С. Ковалевской, 18, Екатеринбург 620219 (Россия)"
Страницы: 377-382
Наноразмерные частицы сплавов Ni1 - xCox, инкапсулированные в темплатной слоистой матрице, синтезированы при термическом разложении предшественников - слоистых двойных гидроксидов [LiAl2(OH)6]2{(Ni1 - xCox(edta)} .qH2O. Морфология и магнитные свойства металлической компоненты изучены методами РФА, ЭМ и вибрационной магнетометрии. Методом РФА показано, что образующиеся наночастицы, имеющие ОКР 3-5 нм, кристаллизуются в ГЦК структуре с параметром решетки, характерным для сплавов Ni1 - xCox. Исследования методом ЭМ выявили, что при переходе от Ni к сплавам Ni1 - xCox вплоть до x = 0.86 морфология частиц практически не меняется: частицы с формой, близкой к сферической, имеют узкий разброс по размерам, а их диаметр монотонно увеличивается с 5.4 до 14 нм. Однако при переходе к Co (x = 100) частицы, приобретая форму дисков, имеют большой разброс по размерам с dср ~ 100 нм. Полученный результат показал, что изменение состава предшественника может рассматриваться как способ контроля над размером и морфологией магнитных наночастиц.
"О. А. Харламова1,2, Р. П. Митрофанова1, К. А. Тарасов1, Л. Э. Чупахина1, В. П. Исупов1, А. С. Зырянов3, К. А. Александров3, Н. Н. Баталов3, З. Р. Козлова3"
"1Институт химии твердого тела и механохимии Сибирского отделения РАН, ул. Кутателадзе, 18, Новосибирск 630128 (Россия) E-mail: isupov@solid.nsk.su 2Новосибирский государственный университет, ул. Пирогова, 2, Новосибирск 630090 (Россия) 3Институт высокотемпературной электрохимии Уральского отделения РАН, ул. С. Ковалевской, 22, Екатеринбург 620219 (Россия)"
Страницы: 383-387
Предложен новый метод синтеза высокодисперсного гамма-моноалюмината лития, основанный на использовании в качестве прекурсора двойного литий-алюминиевого гидроксида в карбонатной форме [LiAl2(OH)6]2CO3. 3H2O. Показано, что прокаливание смеси данного гидроксида с карбонатом лития при температурах выше 800 °С приводит к образованию g-LiAlO2. Изучена последовательность химических превращений, происходящих при синтезе g-LiAlO2. Показано, что на первом этапе синтеза происходит образование a-LiAlO2, который при нагревании до температуры выше 800 °С переходит в g-LiAlO2. Удельная поверхность синтезированного алюмината составляет 3.5 м2/г. Проведены испытания, показавшие возможность применения полученного продукта в качестве загустителя для топливных элементов с расплавленным карбонатным электролитом.
"М. В. Чайкина1, И. А. Хлусов2, А. В. Карлов2, К. С. Пайчадзе1"
"1Институт химии твердого тела и механохимии Сибирского отделения РАН, ул. Кутателадзе, 18, Новосибирск 630128 (Россия) E-mail: chaikina@solid.nsk.su 2Центр ортопедии и медицинского материаловедения Сибирского отделения РАМН, ул. Плеханова, 5, Томск 634029 (Россия)"
Страницы: 389-399
Механохимическим методом синтезированы изоморфные разновидности апатита с замещениями с целью дальнейшей оценки возможности использования полученных образцов в качестве биосовместимых материалов. Путем механической обработки реакционных смесей в планетарном аппарате в течение 5-30 мин непосредственно в активаторе синтезировали готовые продукты в кристаллическом состоянии с наноразмерными частицами. Получены нестехиометрические дефицитные по кальцию и фосфору апатиты, стехиометрический гидроксилапатит и гидроксилапатит с введенными в его структуру ионами калия, цинка и меди сверх стехиометрии, а также апатиты с частичным замещением кальция на магний и барий. Показано влияние воды на кинетику механохимического синтеза и стабилизацию структуры апатита. Приведены данные тестирования образцов апатита на биоактивность и цитотоксичность. Показано, что синтезированные механохимическим методом апатиты могут быть использованы в качестве биосовместимых материалов.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее