В работе на основе теоретического анализа и численных расчетов показано, что динамику поверхности пламени в условиях гидродинамической неустойчивости можно представить как взаимодействие конечного набора нелинейных конфигураций фронта пламени. Их число определяется физическими размерами системы, в которой распространяется пламя. Показано, что эволюция изначально плоского фронта приводит к стационарному режиму, при котором скорость распространения искривленного пламени асимптотически стремится к своему предельному значению, не зависящему от размера системы, в которой происходит горение. Этот вывод получен на основе точного решения нелинейного уравнения, моделирующего гидродинамическую неустойчивость пламени.
Изложена заключительная часть теории ламинарного пламени, опирающаяся на представление о минимуме производства энтропии в слабонеравновесных системах. Внесена поправка в формулу Зельдовича–Франк–Каменецког–Ландау для скорости ламинарного пламени при больших числах Льюиса. Если вычисленное в работе значение скорости пламени соответствует устойчивому режиму распространения фронта, то рассматриваемая задача становится аналогичной задаче Колмогорова–Петровского–Пискунова. При достаточно больших порядках реакции ширина температурно-диффузионного пограничного слоя растет по логарифмическому закону.
Приводятся результаты анализа горения топлив в канале постоянного сечения со сверхзвуковой скоростью потока. С использованием экспериментальных данных о давлении на стенке канала и одномерной методики, учитывающей особенности горения в псевдоскачке, рассчитаны скорости тепловыделения. Показано, что средняя по длине зоны горения скорость тепловыделения,отнесенная к максимально возможной, зависит от отношения длины зоны горения к длине псевдоскачка в изотермическом случае при торможении потока до числа Маха M = 1,0 и не зависит от способа подачи топлива и длины канала. Для псевдоскачкового режима горения предложен подход к нахождению геометрической формы канала при эффективной организации горения в зависимости от параметров потока и физико-химических характеристик топлива, которые могут быть определены из специально поставленных экспериментов.
Показано, что низкочастотные источники колебаний в камерах сгорания твердотопливных реактивных двигателей обусловлены гидродинамической неустойчивостью крупномасштабных контактных разрывов в основном потоке газа и не связаны с вибрационным горением. Проведены экспериментальные и численные исследования, подтверждающие этот вывод.
Приводятся результаты численного исследования на пределе горения безгазовой смеси при слабом отводе тепла в термически толстую оболочку. Математическая модель, использующая сопряженную постановку задачи, позволяет изучать изменения динамики пульсирующего режима горения от внутренней области наполнителя к периферии.
Установлены кинетические закономерности и определены температурные зависимости констант скоростей термического разложения целлюлозы различного биологического происхождения и формы. Проанализирована возможность протекания термодеструкции целлюлозы в режиме горения без участия кислорода.
Методами электротермографического и термогравиметрического анализа исследован углепластик на основе фенольного связующего в диапазоне скоростей нагрева до ∼150 К/с. Определены термокинетические константы реакции термического разложения и теплофизические характеристики материала в зависимости от температуры отжига. Показано, что увеличение темпа нагрева приводит к смещению температурных зависимостей теплоемкости и теплопроводности углепластика в область высоких температур. Результаты обобщены в виде универсальных зависимостей, позволяющих при математическом моделировании процессов термохимического разрушения теплозащитных покрытий учитывать смещение теплофизических параметров через изменение плотности материала в процессе термической деструкции.
Впервые исследован процесс нестационарного окисления окиси углерода на сферическом платиновом катализаторе с учетом влияния внешней диффузии. В противоположность случаю, когда внешнедиффузионным торможением пренебрегается и существует только один основной вид фазовой плоскости катализатора, в работе, благодаря учету влияния внешней диффузии, найдены четыре дополнительных режима работы катализатора, и именно они позволяют объяснить разрывный характер зависимости стационарной скорости реакции от давления смеси и концентраций реагентов. Установлено, что зависимость скорости реакции от времени при переходе катализатора к стационарному состоянию может быть немонотонной и на нее влияют начальное состояние катализатора и безразмерные определяющие параметры. Показано, что в зависимости от значений внешних определяющих параметров может существовать шесть, пять, четыре и два стационарных состояния, являющихся в фазовой плоскости особыми точками типа “седло” или “ узел”.
Исследовалось реагирование в пористом слое, куда газообразный реагент поступает диффузионным путем. В случае термостатированной границы слоя обнаружен эффект вырождения теплового взрыва. Этого эффекта нет в случае плохой теплоотдачи из слоя. Найдены функциональные связи между параметрами системы в различных случаях.
В работе исследовано поведение нанокристаллитной субмикронной керамики ZrC — Y2O3, полученной методом плазмохимического синтеза при взрывном нагружении. Показано, что динамическое воздействие приводит к качественному изменению морфологии частиц порошка, увеличению запасенной деформационной энергии и фазовому переходу, что способствует активации процесса спекания.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее