Статья посвящена изучению метафор в алтайских пословицах. Автор выделяет специфику трех основных разновидностей метафоры. Автор приходит к выводу, что исследуемые разновидности метафоры в функциональном плане схожи. Они служат для обозначения и выделения смысловых признаков провербиальных концептов.
Приведены результаты экспериментального исследования процесса распространения низкоскоростной детонационной волны по цепочке капель жидких углеводородов в атмосфере чистого кислорода. Детонацию инициировали плоской ударной волной при числе Маха М = 2,0 ÷ 3,5. Получены х, t-диаграммы, отражающие структуру детонационной волны. Обнаружен пульсирующий характер распространения фронта пламени и установлены причины наблюдаемого явления. Показано, что происходит не самовоспламенение микрораспыла в следе капли, а его зажигание продуктами сгорания от предыдущей капли.
На качественном уровне рассмотрен механизм зарождения взрывных процессов в смеси фрагментов несгоревшего газа с продуктами реакции. Для экспериментального подтверждения предложенного механизма приведена шлиренкинограмма возникновения детонации в этой смеси. Отмечено, что эксперимент не согласуется с градиентным механизмом возникновения детонации.
Приводятся теоретические результаты по описанию перехода от регулярной структуры волны газовой детонации к нерегулярной. На основе оригинальной модели определен управляющий параметр. При превышении критического значения данного параметра решение, моделирующее пульсирующий ячеистый фронт волны, переходит от регулярного циклического (квазистационарного) режима к апериодическому, ячейки начинают существенно различаться по размерам. Сформулированный критерий качественно и количественно хорошо согласуется с известными экспериментальными данными.
Экспериментально исследованы условия возбуждения плоской детонационной волны. Обнаружена независимость процесса от начального давления. Объяснение этому основано на концепции о ведущей роли соударений поперечных волн в инициировании и распространении детонации. Размер эффективной зоны, ответственной за инициирование детонации, близок к размеру химпика. Предложены формулы для оценки энергетического эквивалента инициатора, основанного на принципе трансформации плоской детонационной волны в сферическую, цилиндрическую или плоскую детонацию при дифракции исходной волны на выпуклом угле. Основные аналитические выводы концепции подтверждаются экспериментальными зависимостями.
Экспериментально изучалась возможность перехода от дефлаграции к детонации смесей СН4 + 2(O2 + βN2) и 2Н2 + O2 + βN2 (β = O÷3,76) в загроможденном пространстве. Для загромождения использовались в различных комбинациях три тонкостенные металлические концентрические сферы-турбулизаторы с большим количеством отверстий. Коэффициент проницаемости сфер составлял 0,1÷0,4, соотношение диаметров 1:2:4. Переход от дефлаграции к детонации в первой смеси наблюдался при β≤ 1, а во второй – при β≤3,2.
Предложена модель воспламенения очага разогрева с учетом связности полей деформации и температуры и зависимости скорости химической реакции от работы сил деформации. Задача рассмотрена в рамках теории термоупругости. Решение проведено методом сращиваемых асимптотических разложений в различных частных случаях. Определены поля температуры, перемещений, деформации и напряжений, радиус очага, разделяющий режимы воспламенения и потухания, и время воспламенения в критических условиях.
Получено выражение для погрешности расчета температуры реакционной зоны: оптически тонкого диффузионного пламени, обусловленной неучетом теплообмена излучением. Показано, что значение этой погрешности максимально для пиротехнических и углеводородных пламен с высокой концентрацией сажи и может достигать нескольких сотен градусов.
На основе кинетической модели конверсии оксида азота при горении углеводородного топлива рассчитаны стадии процесса конверсии NO. определена степень конверсии при ступенчатом сжигании. Результаты расчетов сопоставлены с данными промышленных испытаний. Оценены предельные значения степени конверсии, достижимые в условиях промышленных топок.
Механические напряжения оказывают прогрессирующее воздействие на характеристики горения смесевых твердых топлив. На основе кинетической теории долговечности полимеров, входящих в их состав, изучен механизм влияния напряженно-деформированного состояния на скорость стационарного горения. В результате приложенного напряжения активизируются химические связи полимерной матрицы и возрастает скорость ее термической деструкции. Показано, что это — главная причина увеличения скорости горения при одноосном растяжении. Получена аналитическая формула, выражающая зависимость скорости горения от величины задаваемой или экспериментально измеряемой деформации.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее