Представлены результаты атмосферных экспериментов по распространению в режиме самофокусировки и филаментации фемтосекундных ИК лазерных импульсов со сложным начальным поперечным профилем интенсивности. Изучено влияние начальной геометрической расходимости излучения на поперечную структуру световой энергии пучка в конце трассы. Проведено численное моделирование задачи, и установлены параметры образующихся филаментов и плазменного канала. Показано, что геометрическая фокусировка или дефокусировка излучения позволяют перемещать по трассе нелинейный фокус и связанный с ним участок филаментации силового излучения в достаточно широких пределах.
Исследуется влияние степени когерентности передающего пучка на частоту появления ошибочных битов (BER – bit error rate) в системах беспроводной оптической связи. Получено, что для любого типа трассы распространения (горизонтальной, вертикальной или наклонной) и различной степени проявления турбулентных эффектов существуют оптимальные значения выходной мощности и степени когерентности передающего оптического пучка, определяемой радиусом Фрида. Оптимальное значение степени когерентности можно определить по минимому вычисленной частоты появления ошибочных битов.
Проведен расчет интенсивности широкополосных световых импульсов, распространяющихся в свободном пространстве, в приближении огибающей узкополосного сигнала и на основе комплексного аналитического сигнала. Показано, что для расчета дифракции импульсных световых пучков независимо от длительности импульса и его когерентности в пространстве и во времени возможно использование приближения огибающей узкополосного сигнала.
Предложена модификация спектрально-фазового метода для компьютерного моделирования изменяющихся во времени случайных процессов и полей. В алгоритме используется модель авторегрессии со скользящим средним, описываемая дискретным разностным уравнением. Реализация алгоритма отличается простотой и эффективностью при моделировании динамических задач атмосферной и адаптивной оптики.
Рассматриваются результаты 12-летних исследований зависимости аэрозольного коэффициента рассеяния от относительной влажности воздуха при ее контролируемом изменении (гигрограмм). Выявлено, что не всегда эта функция может быть представлена в однопараметрическом виде во всем диапазоне изменения относительной влажности. Иногда при некотором ее значении наблюдается ярко выраженный фазовый переход. Анализируется частота появления гигрограмм с фазовым переходом в различные сезоны и в разных воздушных массах. Определены вещества, присутствие которых в аэрозольных частицах может обусловливать наличие фазового перехода.
Рассматриваются особенности пространственного распределения и сезонной изменчивости аэрозольной оптической толщи (АОТ) атмосферы в области спектра 0,55 мкм на территории Поволжья, Урала и Западной Сибири по многолетним данным спутниковых наблюдений (MODIS/TERRA и AQUA). Проводится сопоставление спутниковых значений АОТ для отдельных районов Среднего Урала с результатами наблюдений AERONET в районе Коуровской астрономической обсерватории. Показано, что с апреля по декабрь годовой ход АОТ во всех районах одинаков: максимумы замутнения – весной и летом (август), минимумы – в июне и осенью. В среднем более высокие значения АОТ наблюдаются на юге Западной Сибири и Поволжья, а минимальные – на Северном Урале. Отмечается высокая взаимосвязь вариаций месячных значений АОТ в отдельных районах.
В апреле–декабре 2009 и январе–декабре 2011 гг. на Российской внутриконтинентальной станции Восток в рамках 54-й и 56-й Российских антарктических экспедиций с помощью аэрозольного комплекса, в состав которого входили модифицированный нефелометр ФАН, фотоэлектрический счетчик частиц АЗ-10 и аэталометр, разработанный в Институте оптики атмосферы СО РАН, проводились измерения микрофизических характеристик атмосферного аэрозоля. С периодичностью 1–2 ч определялись счетная и массовая концентрации аэрозоля, дисперсный состав (гранулометрия) в диапазоне диаметров частиц d = 0,3 ¸ 10 мкм и массовая концентрация микрокристаллического углерода. Анализируется временная изменчивость измеренных аэрозольных параметров. Сезонная зависимость аэрозольных параметров в годовом ходе проявляется в максимальных значениях параметров для ноября–апреля и минимальных для июня–августа. Показано, что сезонные различия в дисперсном составе антарктического аэрозоля проявляются главным образом в субмикронном диапазоне размеров. Проводится сравнение полученных результатов с данными других исследователей для высокоширотных районов Антарктиды.
А.Н. Павлов, К.А. Шмирко, С.Ю. Столярчук
"Институт автоматики и процессов управления Дальневосточного отделения РАН, 690041, г. Владивосток, ул. Радио, 5 anpavlov@iacp.dvo.ru"
Ключевые слова: лидарное зондирование атмосферы, планетарный пограничный слой, переходная зона «материк–океан», lidar sounding of the atmosphere, planetary boundary layer, transitional ocean–continent zone
Страницы: 968-975
Приведены результаты исследования структуры и динамики планетарного пограничного слоя (ППС) атмосферы летом в переходной зоне «материк–океан», восстановленных по результатам лидарного зондирования атмосферы. Установлены характерные параметры ППС и механизмы, формирующие его структуру и динамику. На примере нескольких летних дней иллюстрируются характерные особенности структуры и динамики ППС данного региона. Даются значения средней высоты основного ППС, верхней границы конвективного слоя и средней высоты стабильного слоя в летние месяцы, а также значения высоты проявления бризовой циркуляции. Приводится обоснование наблюдаемых особенностей.
Анализируются экспериментальные данные по изменчивости вертикально-временной структуры аэрозоля, полученные на лидарном комплексе малой станции высотного зондирования атмосферы ИОА СО РАН за период 2010–2011 гг. Характерной особенностью указанного периода было практическое отсутствие вулканической активности с выбросами в стратосферу. Поэтому возникла возможность для изучения поведения вертикальной структуры фонового аэрозоля в стратосфере помесячно за отдельные ночи в течение двух лет. По результатам анализа выявлены отличия вертикальной стратификации аэрозоля между 2010 и 2011 г. Для 2010 г. максимальное аэрозольное наполнение отмечалось в январе до высот 30 км, с февраля начиналось его убывание до практического исчезновения в марте–августе, а с сентября происходил устойчивый рост. В 2011 г. наблюдалось более интенсивное и продолжительное аэрозольное наполнение стратосферы. Так, высота протяженности аэрозольной компоненты в январе–марте достигала 40 км, отсутствие аэрозоля в стратосфере ограничилось тремя месяцами (май–июль).
Представлены результаты экспериментальных исследований флуктуаций интенсивности лазерного пучка, распространяющегося через сверхзвуковую затопленную струю. Лазерный пучок проходил поперек струи на различных расстояниях от сопла Витошинского. Эксперимент проводился при давлениях в камере Эйфеля от 1,7 до 7 при двух режимах истечения струи: с использованием шевронов на выходном сопле (насадка) и без шевронов. Определены зависимости дисперсии и спектров флуктуаций от давления и расстояния от сопла. Оценивается внутренний оптический масштаб турбулентности.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее