В районе тройного сочленения Буве сходятся три срединно-океанических хребта: Срединно-Атлантический, Юго-Западный Индийский и Американо-Антарктический. При этом район тройного сочленения характеризуется проявлениями магматизма горячей точки Буве. С использованием имеющихся данных лабораторного моделирования представлена схема канала мантийного термохимического плюма, выплавляющегося от границы ядро-мантия и прорывающегося на поверхность. С использованием морфобатиметрических данных по району вулканического о. Буве найден массовый расход магматического расплава для плюма горячей точки Буве. С учетом найденного расхода расплава тепловая мощность источника плюма Буве NБ = (1.7-2.0) · 1010 Вт, и диаметр канала плюма равен 9-16 км. Представлена возможная эволюция плюма Буве на основе рассмотрения его геодинамического режима. Показано влияние геодинамической системы астеносферных конвективных течений на строение океанического дна в районе Буве. Плюм, под действием которого сформировался о. Буве, находится в области восходящего потока астеносферного валикового течения и локально интенсифицирует его. Трансформные разломы в районе Буве образовались под влиянием нисходящих течений астеносферных валиков. Ширина желоба и глубина впадины трансформного разлома Буве определены на основе анализа структуры течения и теплообмена в астеносфере в районе Буве и с учетом интенсифицирующего влияния плюма Буве на восходящий поток астеносферного валикового течения. Проведенные геохимические и термобарогеохимические исследования свидетельствуют об определяющей роли флюидных компонентов в магматических системах горячей точки Буве, для которых характерно обогащение летучими (Н2, Н2О, СО2), щелочами (прежде всего калием) и литофильными редкими и редкоземельными элементами (La, Ce, Th, Nb, Rb). С учетом результатов сейсмотомографии рассмотрены особенности строения мантии в районе тройного сочленения. Вдоль осевой зоны трансформного разлома Буве выделяется высокоскоростная аномалия, корни этой аномалии в верхней мантии прослеживаются до глубины 250 км. Под о. Буве выявлена низкоскоростная аномалия, которая прослеживается до глубин около 500 км.
Изучен основной состав поровых растворов гидротермальных глин, образующих протяженные и мощные толщи на термальных полях Паужетского геотермального месторождения. В вертикальных разрезах толщи гидротермальных глин выделены две зоны, отличающиеся физико-химическими характеристиками, составами и условиями формирования поровых растворов. Показана решающая роль рН в изменении макрокомпонентного состава растворов в зависимости от глубины разреза. Сделан вывод о формировании поровых растворов в результате прямого воздействия на матрицу гидротермальных глин инфильтрационных глубинных термальных вод, при котором происходят процессы перераспределения элементов между породой и контактным раствором. Наряду с общими закономерностями выявлены существенные отличия в условиях формирования состава поровых растворов на Верхне- и Восточно-Паужетском термальных полях, что определяется геологической обстановкой и гидрогеохимическим режимом конкретных участков геотермального месторождения.
Сульфосоли тетраэдритовой и энаргитовой групп из эпитермального Au-Ag месторождения Малетойваям были изучены методами оптической и растровой электронной микроскопии. Выявлено, что они кристаллизовались из кислых магматических вулканогенных гидротерм в условиях повышенного потенциала кислорода. Ранние сульфосоли предзолоторудной стадии Малетойваямского месторождения аргентотетраэдрит-(Zn,Fe) и тетраэдрит-(Zn,Fe), находящиеся в ассоциации с пиритом, арсенопиритом и галенитом, эволюционировали с обогащением их Te, Se и Cu. Увеличение активности этих элементов, которая является следствием возрастания окислительного потенциала среды, приводило к кристаллизации последующих стибио-, арсеноголдфилдита и минералов группы энаргита, избыток Cu в которых увеличивался с эволюцией рудоформирующей системы. Au-содержащие минералы парагенетически связаны c сульфосолями завершающего этапа этой эволюции. Тренд кристаллизации сульфосолей (As → Sb → Te) из месторождения Малетойваям характерен и для других месторождений кислотно-сульфатного типа, к которым также относятся Озерновское и Прасоловское, в противоположность обратному тренду (Te → Sb → As), характерному для сульфосолей из эпитермальных месторождений адуляр-серицитового типа эпитермальных Au-Ag месторождений.
Е.В. Деев1,2, В.В. Оленченко1,2, А.А. Дучков1,2, А.А. Заплавнова1, О.В. Сафронов1,2 1Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН, Новосибирск, Россия deevev1@yandex.ru 2Новосибирский государственный университет
Ключевые слова: Электротомография, активные разломы, мерзлота, землетрясения, дельта р. Лена, Горный Алтай
Страницы: 654-668
Выполнены исследования зон активных разломов высокогорной части Горного Алтая (Южно-Чуйская и Кубадринская) и приустьевой части р. Лена (Приморская) методом электротомографии. Показано, что метод эффективен для идентификации активных разломов на глубинах до первых сотен метров в условиях развития толщи многолетней мерзлоты. Однако присутствие льдистых пород с сопротивлением более 100 кОм·м ограничивает его применение из-за экранирующего эффекта слоя-изолятора. Основной критерий идентификации активных разломов на геоэлектрических разрезах - субвертикальные зоны пониженных сопротивлений на фоне высокоомных толщ многолетнемерзлых пород. Это относится как к молодым сейсморазрывам Чуйского землетрясения ( Ms = 7.3) 27.09.2003 г. в зоне Южно-Чуйского разлома, так и к более возрастным голоценовым палеосейсмодислокациям в зонах Кубадринского и Приморского разломов. При этом величины сопротивлений в зонах активных разломов и сейсмических разрывов слишком высоки, чтобы предполагать их насыщение свободной водой. Понижение удельных сопротивлений в таких зонах относительно вмещающей рамы многолетнемерзлых пород может происходить за счет: 1) повышенной трещиноватости пород и отложений; 2) развития тонкоперетертого материала в зоне динамического влияния разлома, на поверхности частиц которого концентрируется физически связанная незамерзающая вода; 3) остаточных тепловых аномалий в случае современных активизаций, так что отрицательные температуры уже восстановились, но процесс аградации мерзлой толщи еще не завершен полностью; 4) насыщения геологического разреза песчано-алевритовым материалом в результате развития процессов разжижения и флюидизации при землетрясениях. Выявленные закономерности могут быть использованы не только для подтверждения зон морфологически выраженных сегментов активных разломов, но и для поиска их погребенных сегментов в районах развития многолетней мерзлоты, характерных для сейсмически активных высокогорных и арктических районов России и мира.
В.Б. Базарова1, М.А. Климин2, М.С. Лящевская1, Е.Н. Захарченко2, Т.Р. Макарова1 1Тихоокеанский институт географии ДВО РАН, Владивосток, Россия 2Институт водных и экологических проблем ДВО РАН, Хабаровск, Россия
Ключевые слова: торфяные отложения, ботанический состав, диатомеи, споры и пыльца, фотосинтетические пигменты, зольность торфа, индекс влажности, радиоуглеродное датирование, Дальний Восток России
Восстановлена непрерывная запись палеогеографических событий голоцена по данным биостратиграфического изучения и радиоуглеродного датирования прибрежного торфяника в заливе Нерпичий, Охотское море. Развитие зональных ландшафтов с конца позднего плейстоцена шло от кустарниковой лесотундры к березовому криволесью с первыми проявлениями широколиственных в раннем голоцене около 10 тыс. кал. л.н., господству темнохвойной тайги с максимальным участием широколиственных в среднем голоцене, дальнейшему их сокращению в позднем голоцене и почти полному исчезновению в наше время. Торфонакопление на побережье началось при увеличении температур около 10.2 тыс. кал. л.н. Особенностью развития болотной экосистемы стал быстрый переход заболоченного лиственничника после масштабных пожаров к сообществу с доминированием зеленых мхов, а затем к кустарничково-травяно-сфагновым фитоценозам. Дальнейшие сукцессии проходили с постепенной сменой эвтрофно-мезотрофных сфагновых мхов на олиготрофный Sphagnum fuscum, для которого отмечены наибольшие скорости торфонакопления 7.2−6.1 тыс. кал. л.н., когда среднегодовая температура была приблизительно на 2° С выше современной, а многолетнее среднегодовое количество осадков примерно на 40 мм выше, чем в настоящее время. Наиболее выраженные периоды похолоданий в голоцене имели место 10.6−10.2, 9.2−8.9, 8.3−8.0, 5.2−4.8, 4.3−4.0, 3.5−3.3, 2.8−2.5, 1.5−1.0 и 0.6−0.4 тыс. кал. л.н. Выявленные в юго-западном Приохотье похолодания согласуются с последовательностью холодных событий голоцена как в регионе, так и в Северном полушарии.
Ц. ЦЗЯН, Д.А. ПИЧУГИНА
Московский государственный университет им. М.В. Ломоносова, Москва, Россия 464437160@qq.com
Ключевые слова: механизм, активный центр, нанокластер, катализ, золото, фенилэтанол
Страницы: 93-98
Проведено квантово-химическое моделирование адсорбции фенилэтанола на тетраэдрическом кластере Au20 методом функционала плотности DFT/B3LYP/LANL2DZ. Показано, что атомы золота, находящиеся в вершине кластера, обладают наибольшей активностью в адсорбции спирта. Исследованы возможные превращения фенилэтанола на кластере Au20, приводящие к образованию фенилацетальдегида. На основе рассчитанных термодинамических и кинетических величин сделан вывод о преимущественном протекании процесса через металлогидридный механизм.
Л.К. АЛТУНИНА, В.А. КУВШИНОВ
Институт химии нефти СО РАН, Томск, Россия alk@ipc.tsc.ru
Ключевые слова: увеличение нефтеотдачи, глубокие эвтектические растворители, ПАВ, нефтевытесняющие композиции, физико-химические характеристики, высоковязкая нефть, промысловые испытания технологий
Страницы: 99-129
Доля трудноизвлекаемых запасов нефти в мире и России постоянно растет. Разработка трудноизвлекаемых запасов, включая залежи высоковязких нефтей, низкопроницаемые коллекторы, сложные для добычи условия, например, Арктику, становится все более важным фактором поддержания высокого уровня добычи нефти. В Институте химии нефти СО РАН для эффективного освоения трудноизвлекаемых запасов созданы физико-химические и комплексные технологии увеличения нефтеотдачи на принципах “зеленой химии”, буферных саморегулирующихся систем и метода глубоких эвтектических растворителей (ГЭР) с применением “интеллектуальных” композиций поверхностно-активных веществ (ПАВ), координирующих растворителей и комплексных соединений. Композиции химически эволюционируют в пласте с приобретением и длительным сохранением коллоидно-химических свойств, оптимальных для нефтевытеснения. К факторам, вызывающим химическую эволюцию, относятся термобарические пластовые условия, взаимодействие с породой коллектора и пластовыми флюидами. В обзоре представлены фундаментальные и прикладные аспекты созданных в Институте химии нефти СО РАН физико-химических и комплексных методов увеличения нефтеотдачи, результаты лабораторных исследований, промысловых испытаний и промышленного использования технологий увеличения нефтеотдачи месторождений с трудноизвлекаемыми запасами при естественном режиме разработки и паротепловом воздействии, включая залежи высоковязких нефтей. Разработанные технологии экологически безопасны и эффективны. Для реализации технологий созданы кислотные и щелочные нефтевытесняющие композиции на основе ПАВ и буферных систем с регулируемой вязкостью и высокой нефтевытесняющей способностью. Представлены результаты лабораторных исследований фазовых равновесий, физико-химических, кислотно-основных и реологических свойств в системах “ПАВ - ГЭР”, содержащих многоосновную кислоту, полиолы, карбамид, соли алюминия и аммония. Полученные композиции обладают следующими преимуществами: совместимы с пластовыми водами; являются низкозамерзающими (-20)-(-60) °С или твердыми; имеют низкое межфазное натяжение на границе с нефтью; применимы в широком интервале температур (10-200 °С). Промышленное использование технологий позволит продлить рентабельную эксплуатацию месторождений с трудноизвлекаемыми запасами нефти в широком диапазоне климатических условий, включая Арктику.
Р.Н. ЯКУБОВ1, А.С. ПАВЛИК1, Л.Е. ЛЕНЧЕНКОВА1, В.А. СТРИЖНЕВ2, А.А. ПОЛИТОВ3, Е.И. ГУСАРОВА4, А.А. МАМЫКИН2, Г.А. ТЕПТЕРЕВА1, А.Г. ТЕЛИН2 1Уфимский государственный нефтяной технический университет, Уфа, Россия rav_rb@bk.ru 2Уфимский научно-технический центр, Уфа, Россия strijnevva@ufntc.ru 3Институт химии твердого тела и механохимии СО РАН, Новосибирск, Россия anpolitov@yahoo.com 4Уфимский университет науки и технологий, Уфа, Россия gusarovaei@ufntc.ru
Ключевые слова: полиакриламид, органический сшиватель, гидрогель, дисперсный наполнитель, волокнистый наполнитель, ремонтно-изоляционные работы, нефтяные скважины, органо-неорганические материалы
Страницы: 130-143
Разработка и эксплуатация нефтяных и газовых месторождений зачастую сопровождается непредвиденными осложнениями, для ликвидации которых требуется проведение качественных ремонтно-изоляционных работ (РИР). В работе рассмотрены пути повышения эффективности проведения РИР в нефтяных и газовых скважинах с применением гелеобразующих тампонажных материалов. Предлагается использование различных гидрофильных и гидрофобных дисперсных и волокнистых наполнителей на основе полиакриламида и комплексного органического сшивателя в гидрогелях с целью улучшения их реологических свойств и увеличения блокирующей способности. Полученные таким образом органо-неорганические композиты демонстрируют разнообразие реологических свойств, что позволяет выбирать необходимые гелевые композиции для решения тех или иных задач РИР. Представлены результаты реологических (осцилляционных) и фильтрационных исследований, а также опытно-промысловых испытаний составов. В качестве дисперсных наполнителей при проведении осцилляционных исследований были использованы хризотил, черная сажа, гидрофильный нанокремнезем и механоактивированные древесная мука, шелуха риса, гидролизный лигнин. Среди волокнистых наполнителей рассмотрены полипропиленовая фибра, базальтовые и углеродные волокна. По результатам осцилляционных исследований определены величины модулей упругости (G') и вязкости (G''), точки кроссовера и линейного диапазона измерения для каждого из составов. Достигнуто увеличение модуля упругости до 48 % (G' = 53.3 Па) при добавлении черной сажи и до 50 % (G' = 54.2 Па) для состава с хризотилом и углеродным волокном по сравнению с базовым гидрогелем без наполнителей (G' = 36.1 Па). Добавление гидрофильного нанокремнезема позволило увеличить предел текучести (точка кроссовера) более чем на 300 % (до 210.4 Па). Фильтрационные исследования выполнены на модели идеальной трещины различной раскрытости (50, 100, 650 мкм) с использованием естественных образцов керна. Установлено, что при фильтрации воды гидрогель с добавками хризотила и полипропиленовой фибры имеет больший фактор остаточного сопротивления (ФОС = 167) в трещине с раскрытостью 100 мкм по сравнению с базовым гидрогелем (ФОС = 136) в трещине 50 мкм. При блокировании газонасыщенной модели идеальной трещины максимальный ФОС составил 2677. Опытно-промысловые испытания состава с дисперсным и волокнистым наполнителями для ликвидации катастрофических поглощений при бурении и проведении РИР прошли успешно.
Изложены результаты исследований гидратов природного газа в эмульсиях типа “вода-в-нефти” и “вода-в-асфальтосмолопарафиновых отложениях”, проведенных в лаборатории техногенных газовых гидратов Института проблем нефти и газа СО РАН (Якутск). Подробно описаны кинетические аспекты процесса гидратообразования в выбранных эмульсионных средах, преобладающие механизмы формирования гидратных кристаллов, влияние среды на морфологию растущих гидратов. Особенности роста газогидратов исследованы с помощью метода дифференциально-сканирующей калориметрии (ДСК) и метода синтеза в специальных камерах высокого давления.
Актуальной задачей является разработка высокотехнологичных методов утилизации лигнинов, образующихся в огромных количествах в промышленных процессах глубокой переработки лигноцеллюлозного сырья. Рассмотрены новые перспективные методы утилизации древесных лигнинов с получением ценных химических продуктов, разрабатываемые в Институте химии и химической технологии СО РАН (Красноярск). Ароматические альдегиды и органические кислоты получали каталитическим окислением лигнинов кислородом и пероксидом водорода, жидкие углеводороды - каталитической конверсией лигнинов в среде суперкритических спиртов. В процессе термоконверсии древесных лигнинов в сверхкритическом этаноле высокий выход жидких продуктов достигнут при использовании твердых катализаторов на основе сульфатированного диоксида циркония и высококремнеземных цеолитов в Н-форме. В среде сверхкритического бутанола высокую активность в конверсии лигнина в жидкие продукты проявляли нанесенные на SiO2 никельсодержащие катализаторы. Разработаны новые методы синтеза из лигнина нанопористых углеродных материалов, включая углеродные молекулярные сита и аэрогели с уникальными свойствами. Показано, что термощелочная активация лигнина способствует развитию в получаемых углеродных материалах удельной поверхности до 2700 м2/г и суммарного объема пор до 1.4 см3/г. Полученные нанопористые углеродные материалы обладают высокой сорбционной активностью и перспективны для разделения газообразных смесей и очистки газов и воды. Предложены методы синтеза нанопористых органических и углеродных аэрогелей на основе доступных и дешевых лигнинсодержащих композиций: лигнин-танин-формальдегидных и лигнин-фенол-формальдегидных. Получаемые аэрогели имеют широкие потенциальные области применения в качестве термоизоляционных материалов, сорбентов, катализаторов, электродов, электрохимических конденсаторов.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее