Представлены результаты исследования инициирования детонации поперечными струями пламени. Проведены серии одноцикличных экспериментов, в которых использовались стехиометрические пропанокислородные смеси, разбавленные азотом, при начальном атмосферном давлении как в форкамере сгорания с изменяющейся конфигурацией, так и в трубе диаметром 70 мм и длиной 1550 мм. Эксперименты показали, что диаметр сопла форсунки слабо влияет на переход горения в детонацию; конфигурация камеры сгорания также оказывает незначительное воздействие на длину перехода, но влияет на его длительность — последняя уменьшается с увеличением длины форкамеры сгорания. Для сравнения было экспериментально исследовано традиционное зажигание искрой. При этом инициирование детонации не наблюдалось в смесях с концентрацией азота до 65 %.
Численно исследуются процессы подавления и гашения детонации водородокислородной смеси методом вброса инертных частиц в поле течения в рамках двухскоростной двухтемпературной модели механики гетерогенных сред. Определена волновая картина течения в инертном облаке частиц под воздействием ударных и детонационных волн. Показана правомерность применения односкоростной модели для описания процессов подавления и гашения детонации облаками крупных частиц. Выявлено влияние объемной концентрации и диаметра движущихся частиц на скорость детонационной волны, изучен предельный переход от замороженного детонационного течения, реализующегося при больших диаметрах частиц, к равновесному при малых диаметрах. Определены геометрические пределы детонации и проведено сравнение с подобными результатами расчетов по односкоростной модели.
В режиме эжекции воздуха экспериментально исследованы процессы непрерывной спиновой и пульсирующей детонации, а также горения водородовоздушной смеси в проточной кольцевой камере диаметром 306 мм. Удельные расходы водорода составляли 0.6 ÷ 9.8 кг/(с × м2). Установлено, что наибольшие удельные импульсы тяги камеры сгорания достигаются при непрерывной спиновой детонации. В среднем они превышают в 1.5 раза соответствующие величины при сжигании смеси в продольных детонационных волнах, в 2 раза — при обычном горении (в 3 раза при максимальном импульсе тяги 2200 м/с), в 10 раз — при истечении холодного водорода. Изменение удельного расхода водорода начиная от величины ≈1.2 кг/(с × м2), соответствующей максимальному импульсу тяги, уменьшает его значение, причем более резко при приближении к пределам детонации по удельному расходу водорода. Вблизи верхнего предела при значении удельного расхода водорода 3 кг/(с × м2) в исследованной детонационной камере развивается максимальная реактивная тяга — 83 Н.
С учетом стефановского течения и теплопотерь на излучение анализируется влияние начальной температуры пористой углеродной частицы на характеристики ее горения и самопроизвольного погасания. Показано, что при вынужденном зажигании (повышении начальной температуры частицы) диаметр и плотность частицы после самопроизвольного погасания практически не изменяются. В результате остаются частицы одинакового диаметра, но разной плотности. Показана применимость зависимости диаметра частицы от стационарной температуры для определения максимальной температуры горения и диаметра частицы при ее самопроизвольном погасании. Проанализировано влияние концентрации кислорода на области зажигания пористой углеродной частицы, определяемой начальными диаметрами и температурами частицы. Анализ значений диффузионно-кинетических отношений показал соизмеримость вкладов каждой из двух основных гетерогенных реакций окисления углерода в тепло- и массообмен частицы с окружающим газом.
Т. Зечеру1,3, А. Лунгу2, П.-З. Иордаче1, Т. Ротариу3
Ключевые слова: горение, пиротехника, энергия активации, неизотермические условия
Страницы: 89-101
Исследование определенных термохимических процессов позволяет понять процессы горения и тем самым оценить характеристики безопасности и параметры различных энергетических систем. В данной работе методами ТГА и ДТА исследованы пять различных энергетических составов. Определены константы скорости реакции и энергии активации. Методами СЭМ, ЭДРС и РФЭС проведен анализ твердых продуктов горения. Результаты кинетического анализа для неизотермических условий показали важный результат: зажигательные составы имеют более высокую энергию активации (вплоть до 400 кДж/моль), чем световые составы, у которых она составляет 150÷250 кДж/моль.
Измерены пороги взрывчатого разложения тэна (пентаэритриттетранитрата) с добавками ультрадисперсных частиц механокомпозита Al—C в зависимости от концентрации последнего в экспериментальных образцах при воздействии лазерных импульсов (1.064 нм, 12 нс). Плотность образцов 1.73 г/см3, размер частиц Al—C в максимуме распределения 220 нм. Оптимальная концентрация механокомпозита в образцах, при которой достигается минимальный порог взрывчатого превращения, соответствующий 50%-й вероятности взрыва при плотности энергии 4 Дж/см2, составила 0.1÷0.3 %. Проведено сравнение с экспериментальными данными, полученными для образцов с добавками наночастиц алюминия.
Представлены результаты экспериментов, в которых определено электросопротивление полимерной изоляционной композиции (тефлоновой пленки и вакуумной смазки) в условиях ступенчатого ударного сжатия при давлениях до 150 ГПа. Полученные данные могут быть использованы в экспериментах по измерению электропроводности материалов в данном диапазоне ударных давлений.
Рассматриваются применения эмульсионных взрывчатых композиций для соединения стержней строительной арматуры и восстановления изношенной резьбы на оси колесной пары железнодорожных вагонов. Композиции не содержат индивидуальных взрывчатых веществ и значительно повышают безопасность ведения прикладных взрывных работ по металлу.
Изучалось разрушение полупроводниковых мостиков типичного и миниатюрного детонаторов в результате воздействия электростатических разрядов. Определялись форма полупроводниковой пленки, изменение сопротивления, инициирующие характеристики и пороговое напряжение их нарушения. Исследовано влияние многократных электростатических разрядов на состояние мостика.
Исследовано поведение двух новых комплексных солей, содержащих атомы кобальта и вольфрама, при различных термических воздействиях. Установлено, что при нагревании на воздухе соль [Со(NH3)6](WO4)NO3 взрывается при 260 °C, а при дальнейшем нагревании до 800 °C образуется смесь оксидных фаз. Нагревание [CoEn3]2(W7О24) × nН2О проходит без взрыва и также с образованием оксидов кобальта и вольфрама. Комплексные соли использованы при получении сверхтвердых (микротвердость по Виккерсу до 35.8 ГПа) кумулятивных покрытий на титановых шайбах. Высокие значения микротвердости связываются с образованием на поверхности мишеней карбонитридных кристаллических фаз.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее