Сформулирована физико-математическая модель распространения пламени по газовзвеси, состоящей из смеси газов (окислителя, горючего и инертного) и частиц конденсированного вещества, гетерогенно реагирующих с окислителем. На основе численного анализа получены зависимости скорости распространения пламени от параметров, характеризующих массовую концентрацию частиц, их размер, энергию активации гетерогенной реакции на поверхности частиц, тепловой эффект гетерогенной реакции и массообмен частиц. В зависимости от соотношения параметров дисперсной фазы скорость распространения пламени в такой среде может увеличиваться в несколько раз по сравнению со скоростью пламени в незапыленной газовой смеси либо уменьшаться, и тогда влияние частиц аналогично влиянию инертной дисперсной фазы.
Экспериментально исследовано горение частиц магния и титана в акустически пульсирующем потоке для случая, когда размеры частиц меньше амплитуды смещения газа в акустической волне. Обнаружено увеличение времени горения частиц магния и уменьшение времени горения частиц титана при наложении акустических колебаний. Выявлены характерные особенности колебаний интенсивности светового потока горящей частицы магния как отклика парофазно горящей капли металла на внешнее акустическое воздействие. Предлагается объяснение формы регистрируемых колебаний на основе предположения о срыве фронта пламени с лобовой точки капли. Обсуждаются условия, необходимые для срыва пламени в пульсирующем потоке, а также эффекты, к которым может привести срыв пламени с капли при сжигании распыленных топлив в устройствах пульсирующего горения.
В рамках асимптотического анализа исследуется воспламенение реакционноспособного вещества цилиндрической формы, в котором в начальный момент времени имеется периодическая система очагов разогрева. Изучено влияние теплоотдачи в боковую поверхность цилиндра и соседства очагов на режимы процесса. Найденное решение показывает существенную зависимость критических условий воспламенения от режима теплоотдачи. Соседство очагов приводит к конечным изменениям параметров лишь при их достаточно близком расположении. Для случая теплоизолированной боковой поверхности результаты сопоставлены с известными решениями.
Предлагается упрощенная модель распространения пламени по одиночному капилляру в режиме низких скоростей. В основе модели лежит представление о том, что основные закономерности распространения пламени в режиме низких скоростей определяются потоком тепла по стенке трубки от продуктов сгорания в свежую смесь. Получено качественное согласие с экспериментальными результатами.
Изложен метод описания и анализа процессов тепло- и массообмена углеродной частицы, находящейся в поле лазерного излучения. Найдены и проанализированы закономерности зависимостей критических диаметров и температур от поглощенной интенсивности лазерного излучения при низких и высоких значениях температуры воздуха, а также условия, при которых имеют место гистерезисные зависимости температуры частицы от ее диаметра и интенсивности лазерного излучения.
Исследовались пламена одиночных углеводородных капель (бензол, бензин, гексан, октан). Предложен комплексный подход к исследованию горения этих веществ спектральными методами, которые позволяют выявить структуру пламени, концентрацию и дисперсность конденсированной фазы, температуру в зоне горения, радиационные характеристики. Исследовались также излучательные характеристики частиц сажи и их спектральные особенности в диапазоне длин волн λ = 0,25 ÷ 0,75 мкм.
Е. Б. Письменская, А. С. Рогачев, С. Г. Бахтамов, Н. В. Сачкова
Институт структурной макрокинетики и проблем материаловедения РАН, 142432 Черноголовка
Страницы: 40-44
С помощью сканирующей дифференциальной калометрии, электронной металлографии и микроанализа определены основные макрокинетическии стадии безгазового теплового взрыва в системе Nb – Al при различных стехиометрических соотношениях реагентов. Химическое взаимодействие начинается после плавления алюминия (993 К) и протекает медленно вплоть до температуры 1020÷1040 К, при которой начинаются резкий саморазогрев и ускорение реакции (тепловой взрыв). На стадии медленной реакции наблюдаются миграция расплава из центра образца в приповерхностные слои и рост капель на поверхности образца, а на стадии теплового взрыва капли расплава вновь впитываются в образец. Независимо от исходной стехиометрии состава при тепловом взрыве образуются фазы NbAl3 и Nb2Al, различия проявляются лишь в соотношении этих фаз, а также в количестве остаточного (непрореагировавшего) ниобия.
Е. Б. Письменская, А. С. Рогачев, В. И. Пономарев
Институт структурной макрокинетики и проблем материаловедения РАН, 142432 Черноголовка
Страницы: 45-50
Впервые проведено исследование теплового взрыва в безгазовой смеси металлических порошков методом динамического рентгеноструктурного анализа. Определена динамика образования новых кристаллических фаз на всех стадиях процесса. Показано, что после плавления алюминия в системе начинается растворение ниобия в расплаве и кристаллизация промежуточного продукта NbAl3, при этом расплав не смачивает частицы ниобия. Резкое улучшение смачивания наступает при температуре ≈1040 K (по-видимому, вследствие разрушения оксидных пленок), при этом происходит тепловой взрыв и образуется фаза Nb2Al. Реакция во время теплового взрыва также происходит по механизму растворение – кристаллизация.
Исследованы закономерности инициирования и горения системы 3SiO2 — 4Al — 3C в условиях активации реакции горения высокоэнергетической добавкой Al + αKNO3. Показано, что горение данной системы возможно лишь при введении определенного количества добавки в исходную смесь. Установлен механизм активации реакции, в которой ведущая роль придается процессам, протекающим в восстановительной стадии горения. Найдены оптимальные условия синтеза композиционного порошка состава SiC/Al2O3, содержащего волокна SiC.
А. П. Ильин, В. В. Ан, Г. В. Яблуновский, В. И. Верещагин*
Научно-исследовательский институт высоких напряжений *Томского политехническогоуниверситета, 634050 Томск
Страницы: 56-59
Исследован химический состав продуктов горения в воздухе смесей порошков промышленного цирконийалюминиевого сплава циаль (массовое содержание циркония 84 %, алюминия 16 %) и ультрадисперсного порошка Al, полученного с помощью электрического взрыва проводников в аргоне. Проанализирована способность таких смесей к химическому связыванию азота воздуха. Установлено, что при определенных условиях конечные продукты могут содержать до 60 % смеси AlN + ZrN.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее