Совместные международные симпозиумы "Газовые и химические лазеры" и "Лазеры высокой мощности" являются одним из регулярно организуемых под эгидой Международного сообщества инженеров-оптиков и Европейского оптического общества научных форумов. Симпозиумы проводятся каждые два года в крупных европейских городах (Эдинбург-1996, С.-Петербург-1998, Флоренция-2000). В трудах последнего симпозиума представленные материалы были опубликованы в кратком виде (число участников конференции было необычно большим). Авторы благодарят редколлегию журнала за предоставленную возможность достаточно подробно изложить свои взгляды на современные проблемы физической газовой динамики для лазерных систем.
А. С. Борейшо, И. А. Киселев, А. Е. Орлов, А. В. Савин, В. П. Шалимов, В. М. Мальков*, В. М. Хайлов**
"Балтийский государственный технический университет, Санкт-Петербург *Институт теоретической и прикладной механики СО РАН, Новосибирск **Центральный институт авиационного моторостроения, Москва"
Страницы: 605-623
Обсуждаются различные концепции и схемные решения системы восстановления давления (СВД) применительно к конкретным техническим задачам. Рассмотрены основные особенности работы диффузора, эжектора и парогазогенератора. Проанализированы конкретные варианты компоновочных схем СВД на базе авиационных газотурбинных двигателей с HF(DF)- и COIL-лазерами, выделены работоспособные варианты. Результаты анализа подтверждают реальную возможность создания СВД для высокомощных газовых и химических лазеров с применением современных технологий. Рассмотрены вопросы шумоглушения для стационарного и мобильного вариантов СВД.
В. М. Мальков, А. С. Борейшо*, А. В. Савин*, И. А. Киселев*, А. Е. Орлов*
"Институт теоретической и прикладной механики СО РАН, Новосибирск *Балтийский государственный технический университет, Санкт-Петербург"
Страницы: 625-637
Рассматриваются вопросы рационального выбора рабочих параметров сверхзвукового диффузора (СД) и эжектора (ЭЖ), используемых в системах восстановления давления непрерывных химических лазеров. Проанализировано условие согласования параметров СД и ЭЖ при объединении их в единую систему. Приведенные данные в основном относятся к случаю HF(DF)- непрерывных химических лазеров.
А. С. Борейшо, А. В. Савин, В. М. Мальков*, А. А. Игнатьев**, А. В. Федотов**
"Балтийский государственный технический университет, Санкт-Петербург *Институт теоретической и прикладной механики СО РАН, Новосибирск **Институт высокопроизводительных вычислений и баз данных, Санкт-Петербург"
Страницы: 639-646
На основе технологии вычислительного моделирования с использованием нестационарных трехмерных уравнений Навье – Стокса исследованы стартовые процессы и установившееся течение в диффузоре лабораторного HF/DF-лазера. Анализ картины течения показывает, что поток в сверхзвуковом диффузоре HF/DF-лазера склонен к образованию компактной ударно-волновой структуры, сопровождаемой интенсивным трехмерным отрывом. Это необходимо учитывать при выборе его длины величины геометрического поджатия и способа деления диффузора на секции. Параметрический вычислительный эксперимент на основе нестационарных двумерных уравнений Навье – Стокса дал возможность обоснованно выбрать длину камеры смешения эжектора путем оптимизации давления запуска и нагрузочной характеристики. Проведен анализ физико-химических и газодинамических процессов в сопловом блоке COIL и в полости резонатора. Определены газодинамические и кинетические параметры лазерной среды на входе в диффузор. Профили давления и температуры показывают существенное влияние тепловыделения на газодинамические параметры.
А. С. Борейшо, А. Ф. Леонов, И. А. Киселев, А. Е. Орлов, А. В. Савин, В. М. Мальков*
"Балтийский государственный технический университет, Санкт-Петербург *Институт теоретической и прикладной механики СО РАН, Новосибирск"
Страницы: 647-656
Обсуждается методика испытания системы восстановления давления (СВД) для HF/DF-НХЛ без использования лазера. Предлагается способ физического моделирования потока HF/DF-НХЛ с помощью генератора модельного газа (ГМГ). Представлены некоторые схемные и конструктивные решения, а также краткое техническое описание подобной системы. Результаты испытаний СВД с ГМГ сопоставлены с результатами натурных испытаний СВД совместно с DF-НХЛ.
Гидродинамическим и термодинамическим расчетами показано, что при движении газа по замкнутому газодинамическому контуру СО2-лазера включение разряда должно сопровождаться дополнительными потерями давления. В то же время экспериментом установлено, что подвод тепла тлеющим разрядом может не приводить к повышению потерь давления. Визуализация течения показала, что в газоразрядном канале и в расположенном за ним диффузоре существуют стационарные вихри, вращающиеся в плоскости стенки канала. Влияние разряда на движение газа заключается в разбиении крупномасштабных вихрей на мелкие. Одной из причин стратификации анодного слоя является неоднородность потока, которая сокращается под действием тлеющего разряда. Предложен метод определения потерь давления и параметров вентилятора, основанный на сопоставлении температур торможения для изоэнтропических и неизоэнтропических процессов.
В. С. Бабкин, И. Вежба*, Г. А. Карим*
"Институт химической кинетики и горения СО РАН, 630090 Новосибирск, babkin@ns.kinetics.nsc.ru *Университет Калгари, Калгари,Канада"
На примере природных пламен с избытком энергии показано, что эти пламена могут существовать в разнообразных системах и режимах горения. Само существование некоторых пламен, таких как ячеистые и спиновые, обусловлено избыточной энергией. Многообразны и механизмы концентрации энергии. Кроме теплообменных процессов—кондукции, конвекции, излучения—концентрация энергии может быть обусловлена массообменными процессами, фазовыми переходами, фильтрацией, сжимаемостью газа и др. Приведенные примеры пламен с искусственно создаваемыми условиями для концентрации энергии демонстрируют широкий спектр возможных приложений этого явления.
С. С. Минаев, Л. Каган*, Г. Сивашинский*
"Институт химической кинетики и горения СО РАН, 630090 Новосибирск, minaev@ns.kinetics.nsc.ru *School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel"
Дрейфующие, локализованные в пространстве очаги горения или шарики пламени были недавно обнаружены при численном моделировании горения околопредельных предварительно перемешанных смесей газов с низким значением числа Льюиса. В данной работе прямолинейно движущийся очаг пламени рассматривается как бифуркация стационарного сферического очага горения.
О. В. Шарыпов, К. А. Медведко*, А. В. Фомин*
"Институт теплофизики СО РАН, 630090 Новосибирск, model@itp.nsc.ru *Новосибирский государственный университет, 630090 Новосибирск"
В гидродинамической постановке рассмотрена двумерная стационарная структура течения в пленке горючей жидкости на теплопроводной подложке при распространении волны горения. Проанализирован физический механизм формирования данной структуры. Показано, что важная роль в этом принадлежит термокапиллярному эффекту. Обоснован вывод о том, что существование двумерного режима возможно лишь при достаточно низких значениях градиента температуры на поверхности пленки. Получено критическое условие, определяющее переход к трехмерному режиму. Это условие предполагает равенство скорости потока и скорости, индуцируемой термокапиллярной силой. Если градиент температуры превышает определенное критическое значение, то согласно двумерной модели должна возникнуть зона с возвратным течением. Высказано предположение, что подобный режим не может существовать в силу неустойчивости по отношению к трехмерным возмущениям. Эксперименты с гравитационно стекающей пленкой жидкости при наличии неподвижного источника тепла (без волны горения) подтверждают вывод о переходе к трехмерной регулярной структуре течения при достаточно большом градиенте температуры. Первая часть статьи посвящена моделированию структуры пленки при выполнении критического условия. Вторая часть связана с обобщением задачи на случай подвижного источника тепла, перемещающегося с постоянной скоростью. Эта постановка задачи включает ситуацию с распространением волны горения. Математическая формулировка этой задачи позволяет предположить, что существование двумерного стационарного режима в этом случае ограничено тем же самым критическим условием. Если значение градиента температуры на поверхности пленки больше критического значения, то двумерного стационарного решения не существует. Эта концепция, обосновываемая в настоящей работе, объясняет с общих позиций экспериментально наблюдаемые явления в пленках жидкости при наличии локального источника тепла различной природы.
Проведено экспериментальное исследование зажигания слоев из опада хвои кедра, сосны, пихты, листьев березы, а также из лишайника Кладония и мха Шребера. Установлено, что мох зажигается быстрее других лесных горючих материалов. Показано, что время зажигания опада хвои различных деревьев при одинаковом влагосодержании одинаково в пределах точности экспериментальных данных, а для опада листьев березы оно несколько ниже, чем для опада хвойных пород деревьев. Установлено, что наблюдаемые различия связаны с особенностями взаимодействия лучистого потока со слоями опада хвои и листьев. Оценены минимальные значения теплового импульса зажигания опада хвои и листьев для различной плотности тепловых потоков. Отмечена тенденция к минимизации значений этой величины при плотности потоков 0,50,8 МВт/м2
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее