|
|
Главная – Журналы – Сибирский журнал вычислительной математики 2015 номер 3
Array
(
[SESS_AUTH] => Array
(
[POLICY] => Array
(
[SESSION_TIMEOUT] => 24
[SESSION_IP_MASK] => 0.0.0.0
[MAX_STORE_NUM] => 10
[STORE_IP_MASK] => 0.0.0.0
[STORE_TIMEOUT] => 525600
[CHECKWORD_TIMEOUT] => 525600
[PASSWORD_LENGTH] => 6
[PASSWORD_UPPERCASE] => N
[PASSWORD_LOWERCASE] => N
[PASSWORD_DIGITS] => N
[PASSWORD_PUNCTUATION] => N
[LOGIN_ATTEMPTS] => 0
[PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
)
)
[SESS_IP] => 3.142.210.173
[SESS_TIME] => 1732180252
[BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
[fixed_session_id] => 09adf5da82e6cd41c3850c83d4984b69
[UNIQUE_KEY] => cc87725917b87222dcf44e9a5d46a477
[BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
(
[LOGIN] =>
[POLICY_ATTEMPTS] => 0
)
)
2015 год, номер 3
А.Л. Баландин
Институт динамики систем и теории управления им. В.М. Матросова Сибирского отделения Российской академии наук, ул. Лермонтова, 134, Иркутск, 664033 balandin@icc.ru
Ключевые слова: вычислительная томография, сферические гармоники, обратные задачи
Страницы: 237-253
Аннотация >>
Для исследования бессиловых полей предложено использовать методы вычислительной томографии. Для обращения лучевого преобразования разработан метод мультипольного разложения. Метод основан на разложении векторного поля и лучевого преобразования по специальным базисным векторным функциям. Приведены аналитические выражения лучевого преобразования базисных векторных функций и представлены результаты численного моделирования.
DOI: 10.15372/SJNM20150301 |
О.Л. Бандман, А.Е. Киреева
Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090 bandman@ssd.sscc.ru
Ключевые слова: компьютерное моделирование, стохастический клеточный автомат, асинхронный клеточный автомат, параллельные вычисления, каталитические реакции, автоволны
Страницы: 255-274
Аннотация >>
В статье обобщен опыт исследования стохастических клеточно-автоматных моделей образования устойчивых колебаний и автоволн в активных средах. В результате сформировалось понятие стохастического клеточного автомата (КА), который соответствует асинхронным КА с вероятностными правилами переходов. В статье дается формальное представление стохастического КА и стохастической КА-модели. Описаны свойства КА-моделей и методы их синтеза по заданному набору элементарных физических и химических превращений. Возможности моделирования автоволновых и колебательных процессов показаны на примере реакции окисления моноокиси углерода на платиновом катализаторе с перестройкой структуры его поверхности. Моделирование позволило выявить области значений параметров реакции, при которых наблюдаются устойчивые колебания плотности реагентов, и наблюдать автоволны на поверхности платины. Особое внимание уделено обеспечению высокой эффективности параллельной реализации алгоритма функционирования стохастического КА, которое требует предварительного преобразования асинхронного режима в блочно-синхронный и обоснования его эквивалентности асинхронному. Последнее проделано для исследуемой КА-модели реакции путем проведения сравнительного статистического анализа результатов моделирования.
DOI: 10.15372/SJNM20150302 |
И.В. Бычков1, В.И. Зоркальцев2, А.В. Казазаева3
1Институт динамики систем и теории управления им. В.М. Матросова Сибирского отделения Российской академии наук, ул. Лермонтова, 134, а/я 292, Иркутск, 664033 ivbychkov@mail.ru 2Институт систем энергетики им. Л.А. Мелентьева Сибирского отделения Российской академии наук, ул. Лермонтова, 130, Иркутск, 664033 zork@isem.sei.irk.ru 3Иркутский государственный университет, ул. Карла Маркса, 1, Иркутск, 664033 kuz-ann@yandex.ru
Ключевые слова: математические модели, оценка параметров, метод наименьших квадратов, весовые коэффициенты
Страницы: 275-288
Аннотация >>
Рассматривается задача оценки параметров линейных математических моделей. Доказано, что за счет выбора весовых коэффициентов в методе наименьших квадратов можно получать решения, вырабатываемые путем минимизации любых штрафных функций из широкого класса, в том числе любой из гельдеровских норм. Установлена ограниченность множества решений, образуемого в результате варьирования весовых коэффициентов в методе наименьших квадратов. Возможности практического использования установленных теоретических фактов иллюстрируются на материале эколого-математической модели.
DOI: 10.15372/SJNM20150303 |
А.И. Задорин
Институт математики Сибирского отделения Российской академии наук, ул. Певцова, 13, Омск, 644099 zadorin@ofim.oscsbras.ru
Ключевые слова: функция одной переменной, пограничный слой, большие градиенты, сетка Шишкина, интерполяция Лагранжа, формула Ньютона-Котеса, оценка погрешности
Страницы: 289-303
Аннотация >>
Исследуется вопрос интерполяции функции одной переменной, соответствующей решению краевой задачи для уравнения с малым параметром ε при старшей производной. Применение многочлена Лагранжа на равномерной сетке для интерполяции такой функции может привести к значительным погрешностям. Получены ε-равномерные оценки погрешности интерполяции многочленом Лагранжа на сетке Шишкина. Приведена модификация сетки Шишкина, повышающая точность интерполяции. Получены ε-равномерные оценки погрешности формул Ньютона-Котеса на таких сетках. Проведены численные эксперименты, результаты которых согласуются с теоретическими оценками.
DOI: 10.15372/SJNM20150304 |
Р. И. Окуонгае, М. Н. О. Ихиле
Department of Mathematics, University of Benin, P.M.B. 1154, Benin City, Edo state, Nigeria okunoghae01@yahoo.co.uk
Ключевые слова: непрерывные линейные многошаговые методы, жесткая задача, жесткая устойчивость, граничный локус, гибридные ЛММ
Страницы: 305-317
Аннотация >>
В данной статье представлено семейство гибридных линейных многошаговых методов (ЛММ) со второй производной для численного решения жестких начальных задач (НЗ) для обыкновенных дифференциальных уравнений (ОДУ). Эти методы являются жестко устойчивыми для числа шагов k ≤ 7.
DOI: 10.15372/SJNM20150305 |
Е.А. Перепелкин
Алтайский государственный технический университет им. И.И. Ползунова, просп. Ленина, 46, Барнаул, 656038 eap@list.ru
Ключевые слова: собственные значения, обратная задача, произведение матриц
Страницы: 319-326
Аннотация >>
Предложен метод решения обратной задачи на собственные значения для произведения матриц второго и третьего порядков. Получены необходимые и достаточные условия существования решения задачи.
DOI: 10.15372/SJNM20150306 |
С.В. Солодуша1, Н.М. Япарова2
1Институт систем энергетики им. Л.А. Мелентьева Сибирского отделения Российской академии наук, ул. Лермонтова, 130, Иркутск, 664033 solodusha@isem.sei.irk.ru 2Южно-Уральский государственный университет (национальный исследовательский университет), просп. Ленина, 76, Челябинск, 454080 ddjy@math.susu.ac.ru
Ключевые слова: интегральные уравнения Вольтерра, численное решение, метод интегрирования произведения
Страницы: 327-335
Аннотация >>
Рассмотрена одна обратная граничная задача теплопроводности. Для ее решения используется подход, основанный на преобразовании Лапласа, который позволяет свести исходную задачу к решению уравнений Вольтерра I рода. Для численного решения соответствующих интегральных уравнений разработаны алгоритмы, базирующиеся на применении метода интегрирования произведения и квадратуры средних прямоугольников. С целью проверки эффективности численных методов проведены серии тестовых расчетов.
DOI: 10.15372/SJNM20150307 |
М.С. Тарков
Институт физики полупроводников им. Акад. А.К. Ржанова Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 13, Новосибирск, 630090 tarkov@isp.nsc.ru
Ключевые слова: задача коммивояжера, нейронная сеть Хопфилда, 2-opt, технология CUDA, LKH-алгоритм
Страницы: 337-347
Аннотация >>
Предложен новый алгоритм (NWTA-алгоритм) решения задачи коммивояжера. Алгоритм основан на использовании рекуррентной нейронной сети Хопфилда, метода WTA (“Winner takes all”) формирования цикла и метода 2-opt его оптимизации. Особенностью предложенного алгоритма является использование метода частичных (префиксных) сумм для ускорения решения системы уравнений сети Хопфилда. Для получения дополнительного ускорения выполнено распараллеливание предложенного алгоритма на графическом процессоре с использованием технологии CUDA. На ряде примеров из библиотеки TSPLIB с числом городов от 51 до 2392 показано, что NWTA-алгоритм находит приближенные решения задачи коммивояжера (относительное увеличение длины маршрута по сравнению с оптимальной составляет 0.03 ÷ 0.14). При большом числе городов (130 и выше) время работы NWTA-алгоритма в 4 ÷ 24 раз меньше времени работы эвристического алгоритма LKH, посредством которого получены оптимальные решения для всех примеров из TSPLIB.
DOI: 10.15372/SJNM20150308 |
|