Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.238.121.7
    [SESS_TIME] => 1721333551
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 722d0662c3bfb3e4f29c6642ffeab411
    [UNIQUE_KEY] => bc90e046c6bcd8aa1a99795f21c0464e
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2017 год, номер 3

Метод внешнего слоя для решения краевых задач теории упругости

В.И. Машуков
Сибирский государственный университет путей сообщения, ул. Дуси Ковальчук, 191, Новосибирск, 630049
mvimash@pochta.ru
Ключевые слова: теория, упругость, граничные интегральные уравнения, внешний слой, двумерные, задачи, метод сопряжённых градиентов, theory, elasticity, boundary integral equations, external layer, two-dimensional, objectives, conjugate gradients method
Страницы: 289-296

Аннотация

В статье представлен вычислительный алгоритм для решения краевых задач теории упругости, пригодный для решения контактных задач и задач, область деформирования которых содержит тонкие слои среды. Решение представляется в виде линейной комбинации вспомогательных решений и фундаментальных решений уравнений Ляме. Сингулярные точки фундаментальных решений уравнений Ляме располагаются слоем вне области деформирования вблизи граничной. Коэффициенты линейной комбинации определяются путём минимизации отклонения линейной комбинации от граничных условий. Для минимизации отклонений применяется метод сопряжённых градиентов. Приведены примеры расчётов для смешанных граничных условий.

DOI: 10.15372/SJNM20170305