Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.230.144.31
    [SESS_TIME] => 1632793493
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 0f84c0c51b78b3d385daf5ceff49d561
    [SALE_USER_ID] => 0
    [UNIQUE_KEY] => a2c7a800cd55056d92a3012d9188299b
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Прикладная механика и техническая физика

2017 год, номер 4

Исследование устойчивости и закритического деформирования микробалки с трещиной на основе моментной теории упругости

М. Акбарзаде Хоршиди, М. Шариати
Университет им. Фирдоуси, Мешхед, Иран
majid.akbarzadeh.kh@gmail.com
Ключевые слова: потеря устойчивости, закритическое деформирование, микробалка с трещиной, моментная теория упругости, характерный линейный размер, buckling, postbuckling, cracked microbeam, couple stress theory, size effect
Страницы: 171-179

Аннотация

С использованием модифицированной моментной теории упругости исследуются устойчивость и закритическое деформирование микробалки Эйлера - Бернулли при наличии в ней краевой трещины нормального отрыва. Трещина моделируется невесомой спиральной упругой пружиной. Используемая модель содержит характерный линейный размер, позволяющий учесть масштабный эффект. При формулировке задачи о закритическом деформировании используются нелинейные соотношения Кармана. Получены аналитические решения задач об устойчивости и закритическом деформировании микробалки со свободно опертыми торцами при наличии в ней трещины. Исследовано влияние положения трещины, ее жесткости и характерного линейного размера модели материала балки на ее устойчивость и закритическое деформирование.

DOI: 10.15372/PMTF20170417