Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.236.100.210
    [SESS_TIME] => 1725926479
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => f7cb23e958a990aa486f05a3c0bcfea9
    [UNIQUE_KEY] => 4e01f0daaa6d84749bd49e4216b8d5d8
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2015 год, номер 2

Асимптотика поля напряжений у вершины усталостной трещины в среде с поврежденностью: вычислительный эксперимент и аналитическое решение

Л.В. Степанова, С.А. Игонин
Самарский государственный университет, ул. Акад. Павлова, 1, Самара, 443011
stepanovalv@samsu.ru
Ключевые слова: усталостный рост трещины, циклическое нагружение, асимптотический анализ, нелинейная задача на собственные значения, аналитическое решение
Страницы: 201-217

Аннотация

В статье приводится асимптотический анализ полей напряжений, деформаций и сплошности в окрестности вершины трещины в условиях ее усталостного роста в поврежденной среде в связанной постановке задачи, когда параметр сплошности инкорпорируется в определяющие уравнения материала, базирующиеся на законе Гука для изотропного линейно упругого материала. Построено асимптотическое решение задачи, основанное на методе разложения по собственным функциям. Показано, что задача определения механических полей у вершины усталостной трещины сводится к нелинейной задаче на собственные значения, аналитическое решение которой получено в работе. Показано, что метод искусственного малого параметра позволяет найти точное решение нелинейных задач на собственные значения в замкнутой форме.

DOI: 10.15372/SJNM20150208