Об интерполяционном операторе четвертого порядка точности для разностного решения трехмерного уравнения Лапласа
А.А. Досиев1, Э. Целикер2
Ключевые слова: 3D уравнение Лапласа, кубические сетки на параллелепипеде, 15-и точечная схема, интерполяция для гармонических функций, дискретное преобразование Фурье
Страницы: 33-48
Аннотация
Для получения решения четвертого порядка точности задачи Дирихле для уравнения Лапласа в прямоугольном параллелепипеде предлагается трехмерный (3D) оператор согласования. Оператор строится на основе однородных ортогонально-гармонических многочленов в трех переменных и использует разностное решение задачи на кубической сетке для получения приближенного решения между узлами сетки. Разностное решение в узлах, используемых оператором интерполяции, вычисляется по новой формуле, разработанной на основе дискретного преобразования Фурье. Эта формула может применяться прямо к требуемым узлам без решения всей системы разностных уравнений. Четвертый порядок точности построенных численных инструментов демонстрируется на численном примере.
Наш сайт использует куки. Продолжая им пользоваться, вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности. Подробнее