Априорные оценки ошибки P20-P1 смешанных методов конечных элементов для класса нелинейных параболических уравнений
Ч. Лиу1, Т. Хоу2, Ж. Венг3
1Хунаньский университет науки и техники, Юнчжоу, Китай liuchunmei8080@qq.com. 441808755@qq.com 2Университет Бэйхуа, Цзилинь, Китай 3Университет Хуацяо, Гуанчжоу, Китай htlchb@163.com (т.хоу). zfwmath@163.com
Ключевые слова: нелинейные параболические уравнения, P-P смешанный метод конечных элементов, априорные оценки ошибки, квадратное интегрируемое пространство
Страницы: 409-424
Аннотация
В данной статье мы рассматриваем P 20- P 1 смешанные конечно-элементные аппроксимации класса нелинейных параболических уравнений. Используется неявная схема Эйлера для временной дискретизации. Во-первых, определяется новая смешанная проекция и доказываются соответствующие априорные оценки ошибки. Во-вторых, получаются оптимальные априорные оценки ошибки для переменной давления и переменной скорости. Наконец, представлен численный пример для проверки теоретических результатов.
DOI: 10.15372/SJNM20210405 |