Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 18.119.112.208
    [SESS_TIME] => 1736925086
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => ac21a7d7bec1c6abeeed0f25dc650571
    [UNIQUE_KEY] => e110c6ca6ea80931fb5713e797ff2568
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2021 год, номер 2

Семейство итерационных методов пятого порядка для поиска кратных корней нелинейных уравнений

Дж.Р. Шарма1, Х. Арора2
1Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
jrshira@yahoo.co.in
2D.A.V. University, Sarmastpur, Jalandhar, India
arorahimani362@gmail.com
Ключевые слова: нелинейные уравнения, итерационные методы, быстрые алгоритмы, кратные корни, области притяжения
Страницы: 213-227

Аннотация

Мы представляем семейство итерационных методов пятого порядка для нахождения кратных корней нелинейных уравнений. Рассмотрены численные примеры для проверки верности теоретических результатов. Результаты показывают, что новые методы успешно конкурируют с другими методами для нахождения кратных корней. Указаны области притяжения новых методов и некоторых существующих методов для наблюдения динамики в комплексной плоскости.

DOI: 10.15372/SJNM20210207