Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.14.249.191
    [SESS_TIME] => 1736924407
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => c6d6821645c494b35b0dc74eb8b96329
    [UNIQUE_KEY] => e57c38182a0f4fbcbd006234c4de5b87
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2021 год, номер 2

Обобщенная двумерная фрактальная интерполяционная функция Эрмита

С. Джха1, А.К.Б. Чанд1, М.А. Наваску2
1Indian Institute of Technology Madras, Chennai, India
sangitajha285@gmail.com
2Universidad de Zaragoza, Zaragoza, Spain
manavas@unizar.es
Ключевые слова: фрактальная интерполяция, интерполяция Эрмита, фрактальная поверхность, сходимость
Страницы: 117-129

Аннотация

Фрактальная интерполяция обеспечивает эффективный способ описания гладкой или негладкой структуры, связанной с природными и научными данными. Цель данной статьи - ввести двумерную фрактальную интерполяционную формулу Эрмита, обобщающую классическую интерполяционную формулу Эрмита для двух переменных. Показано, что предлагаемая фрактальная интерполяционная функция Эрмита и ее производные всех порядков являются хорошими приближениями исходной функции, даже если частные производные исходных функций являются негладкими по своей природе.

DOI: 10.15372/SJNM20210201