Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Поиск по журналу

Сибирский журнал вычислительной математики

2018 год, номер 4

Численное решение трехмерных внешних краевых задач для уравнения Лапласа методом декомпозиции расчетной области без пересечения

"В.М. Свешников1,2, А.О. Савченко1, А.В. Петухов1"
"1Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090
victor@lapasrv.sscc.ru
2Новосибирский национальный исследовательский государственный университет, ул. Пирогова, 2, Новосибирск, 630090"
Ключевые слова: внешние краевые задачи, декомпозиция расчетной области, вычисление интегралов с особенностями, итерационные методы в подпространствах Крылова, exterior boundary value problems, non-overlapping decomposition, computation of integrals with a singularities, iterative methods in Krylov subspaces
Страницы: 435-449

Аннотация

Предложен метод решения трехмерных внешних краевых задач для уравнения Лапласа, основанный на декомпозиции расчетной области на две подобласти, сопрягаемые без пересечения. Исходная краевая задача сводится к двум подзадачам: внутренней и внешней на сфере. Для сшивки решений на границе сопряжения подобластей (сфере) записывается специальное операторное уравнение, которое аппроксимируется системой линейных алгебраических уравнений. Данная система решается итерационными методами в подпространствах Крылова. Метод иллюстрируется решением модельных задач, подтверждающим работоспособность предлагаемого подхода.

DOI: 10.15372/SJNM20180407