Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.137.159.134
    [SESS_TIME] => 1732201119
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => b473792cffd1c0c495f77ce61dd766b6
    [UNIQUE_KEY] => 6a3f07a698564797c7fbd66b65d7a008
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2018 год, номер 1

Свойства разностных схем на косых шаблонах для гиперболических уравнений

В.И. Паасонен1,2
1Институт вычислительных технологий Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090
paas@ict.nsc.ru
2Новосибирский национальный исследовательский государственный университет, ул. Пирогова, 2, Новосибирск, 630090
Ключевые слова: неравномерная сетка, адаптивная сетка, косой шаблон, подвижная сетка, компактная схема, non-uniform grid, adaptive grid, oblique stencil, moving grid, compact scheme
Страницы: 83-97

Аннотация

В работе изучаются всевозможные разностные схемы для уравнения переноса на косых шаблонах, т. е. схемы, использующие различные пространственные сетки на разных временных слоях. Такого рода схемы могут быть полезны при решении краевых задач с подвижными границами, при использовании регулярных сеток нестандартной структуры, например треугольных или сотовых, а также при использовании адаптивных методов. Для исследования устойчивости схем на косых шаблонах используются анализ первого дифференциального приближения и дисперсионный анализ. Анализируется смысл условий устойчивости с точки зрения ограничений на расположение элементов шаблона относительно характеристик уравнения, а также проводится сравнение результатов с геометрическими интерпретациями устойчивости классических схем. В работе представлены обобщения косых схем на случай квазилинейного уравнения переноса и приведены результаты численных экспериментов для них.

DOI: 10.15372/SJNM20180106