Publishing House SB RAS:

Publishing House SB RAS:

Address of the Publishing House SB RAS:
Morskoy pr. 2, 630090 Novosibirsk, Russia



Advanced Search

Russian Geology and Geophysics

2023 year, number 6

Thermal Conductivity of Rocks and Estimates of Heat Flow in the Lena-Anabar Interfluve (Siberian Platform)

A.D. Duchkov1,2, D.E. Ayunov1, P.A. Yan1, A.I. Sivtsev3, L.S. Sokolova1
1Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia
3OOO Taas-Yuryakh Neftegazodobycha, Yakutsk, Russia
Keywords: Wells, physical properties of rocks, thermograms of wells, heat flow, Siberian Platform, Lena-Anabar interfluve

Abstract

We present results of measurements of the physical properties (thermal conductivity, porosity, permeability, and density) of 65 air-dry sedimentary-rock samples from the cores of six deep wells drilled in the Lena-Anabar interfluve. The rocks are compact low-porosity, almost impermeable siltstones, sandstones, and dolomites mainly of Paleozoic and Precambrian ages. Correlations of thermal conductivity with porosity and bulk density have been established. The available information about the thermal conductivity of rocks as well as the production thermograms recorded after drilling made it possible to estimate the geothermal gradient and heat flow ( q ) for the Ust’-Olenekskaya-2370, Charchykskaya-1, Khastakhskaya-930, and D’yappal’skaya-1 wells. The gradient was calculated from the temperature values at the lower boundary of the permafrost (0 ºC) and at the bottom-hole. The determined heat flow varies from 37 to 70 mW/m2. These q estimates are consistent with the available data on the distribution of heat flow in the north of the Siberian Platform. The proposed method for heat flow estimation is worthy of use in other northern regions of Siberia for obtaining more geothermal data.