A. G. Sipatrov, A. A. Khassin, T. M. Yurieva, V. A. Kirillov, G. K. Chermashentseva and V. N. Parmon
G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Pr. Akademika Lavrentyeva 5, Novosibirsk 630090 (Russia), E-mail: los@catalysis.nsk.su
A novel scheme for the organization of the three-phase process has been proposed, basing on a new type of a stochastically organized porous and catalytically active composite monolith (PCM). The high catalyst loading (1 g/cm3) and high heat conductivity (3 W/(m K)) make this new material very attractive for exothermic multiphase processes, e. g. for the Fischer–Tropsch synthesis. The possibility of preparing strong PCMs with the permeability of 10–500 mDarcy has been demonstrated. The gas-vapor phase flow through a PCM particle can be performed via transport pores which diameter was measured as 4–10 mm. The pressure drop has been shown to be reasonable for the Fischer–Tropsch synthesis. The effectiveness of the PCM usage at 0.1MPa, 210 °C has been found to be above 70 %. PCM material was concluded to be the prospective
P. V. Snytnikov1, V. A. Sobyanin1, V. D. Belyaev1 and D. A. Shlyapin2 1G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Pr. Akademika Lavrentyeva 5, Novosibirsk 630090 (Russia), E-mail: sobyanin@catalysis.nsk.su 2Omsk Branch of the United Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Ul. Neftezavodskaya 54, Omsk 644040 (Russia)
Selective oxidation of CO in excess hydrogen and in the presence of CO2 and H2O has been studied over monometallic Pt, Ru and bimetallic Pt–Ru supported on porous carbonaceous material catalysts. The catalysts provided CO conversion ³98 % and seem to be promising for efficient single-step removal of CO from hydrogen-rich streams containing CO2 and H2O.
S. A. Yashnik1, L. T. Tsykoza1, Z. R. Ismagilov1, V. A. Sazonov1, N. V. Shikina1, V. V. Kuznetsov1, I. A. Ovsyannikova1, N. M. Danchenko2, S. P. Denisov2 and H. J. Veringa 3 1 G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Pr. Akademika Lavrentyeva 5, Novosibirsk 630090 (Russia), E-mail: ZRI@catalysis.nsk.su 2Ural Electrochemical Plant, Novoural'sk (Russia) 3ECN, Westerduiinweg 3, 1755 ZG Petten (The Netherlands)
The composition of modified monolith zeolite catalysts containing the basic components in the washcoating layer is suggested. When the washcoating layer contains 80 % zeolite, 10 % TiO2, and 10 % Al2O3, the catalyst exhibits both activity and adhesion strength. The titanium catalyst is stable to sulfur poisoning (H2S) at 500 °C; a small decrease in the catalyst activity at 400 °C is no longer observed after regeneration. Introducing 4 % mass Ce (calculated for respect to the washcoating) into the ready catalyst, one can preserve the catalyst activity and provide its stabile operation in the presence of water vapour both at 400 and 500 °C. Activity of the titanium-cerium-modified monolith catalyst is stable in the presence of water vapour and sulphur compounds in the gas mixture at a time.