Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Поиск по журналу

Сибирский журнал вычислительной математики

2019 год, номер 4

Законы сохранения и другие формулы для семейств лучей и фронтов и для уравнения эйконала

А.Г. Меграбов1,2
1Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия
mag@sscc.ru
2Новосибирский государственный технический университет, Новосибирск, Россия
Ключевые слова: кинематическая сейсмика, геометрическая оптика, уравнение эйконала, семейство лучей, семейство фронтов, законы сохранения, дифференциальная геометрия, геометрия векторных полей, kinematic seismic, geometric optics, eikonal equation, family of rays, family of wavefronts, conservation laws, differential geometry, geometry of vector fields
Страницы: 483-497

Аннотация

Ранее автором были получены дифференциальные законы сохранения для двумерного уравнения эйконала в неоднородной изотропной среде. Они представляют собой дивергентные тождества вида div F =0, векторное поле F выражается через решение уравнения эйконала (поле времен), показатель преломления (параметр уравнения) и их частные производные. Были также найдены равносильные законы сохранения (дивергентные тождества) для семейств лучей и фронтов в терминах их геометрических характеристик, т. е. был найден геометрический смысл полученных законов сохранения для двумерного уравнения эйконала. В данной статье представлены трехмерные аналоги этих результатов: дифференциальные законы сохранения для трехмерного уравнения эйконала и законы сохранения (дивергентные тождества вида div F =0) для семейств лучей и фронтов, где векторное поле F под знаком дивергенции выражается через классические геометрические характеристики кривых лучей: их орты Френе (единичные векторы касательной, главной нормали и бинормали), кривизну и кручение, либо через классические геометрические характеристики поверхностей фронтов: их нормаль, главные кривизны, главные направления, гауссову и среднюю кривизны. Все результаты получены на основе общих векторных и геометрических формул (дифференциальных законов сохранения и других формул), полученных автором для семейств произвольных гладких кривых, семейств произвольных гладких поверхностей и произвольных гладких векторных полей.

DOI: 10.15372/SJNM20190407
Добавить в корзину
Товар добавлен в корзину