2010. Том 51, № 2

Март – апрель

C. 225 – 230

УДК 544.18

ИЗУЧЕНИЕ ФАКТОРОВ, ВЛИЯЮЩИХ НА ТОЧНОСТЬ КОМБИНИРОВАННЫХ МЕТОДОВ РАСЧЕТА

© 2010 Р.Р. Сырлыбаева*, И.В. Вакулин, Р.Ф. Талипов

Башкирский государственный университет, Уфа

Статья поступила 24 марта 2009 г.

С доработки — 19 мая 2009 г.

На примере комбинированных методов расчета (КМР), соответствующих расчетам в приближениях MP4/6-311+G(fd, p)//MP2/6-31G(d, p) и MP4/aug-cc-pvTZ//MP2/cc-pvDZ, рассмотрены факторы, влияющие на их точность. Расчетами полной энергии для ряда соединений показано, что точность КМР снижается при совместном применении двух-и трехкратно валентно-расщепленных базисных наборов, а также разных методов учета электронной корреляции. Использование эмпирических поправок, учитывающих характер распределения электронов в молекуле, позволяет увеличить точность КМР. Учет указанных факторов позволяет получить КМР, для которого среднее абсолютное отклонение относительно данных расчета в приближении MP4/6-311+G(fd, p) при вычислении полной энергии составляет 1,0 кДж/моль, а наибольшее максимальное отклонение — 8,0 кДж/моль.

Ключевые слова: комбинированные методы расчета, расчет полной энергии, неэмпирические методы.

Использование принципа аддитивности [1] является одним из наиболее успешно применяемых подходов при создании новых высокоточных квантово-химических методов, позволяющих исследователю проводить изучение химических объектов в сложных приближениях с учетом снижения затратных ресурсов ЭВМ. Хорошо известными примерами подобных комбинированных методов расчета (КМР), способных с химической точностью рассчитывать термодинамические параметры объектов, являются методы G_n ("Gaussian theory") [1—5] и CBS ("Complete Basis Set") [6—9]. Однако возможности использования этих КМР ограничены размерами исследуемых объектов, так как эти методы остаются весьма ресурсоемкими.

Принцип аддитивности достаточно прост и может быть применен любым исследователем для создания собственного, наиболее целесообразного для решения поставленных задач, КМР [10]. При этом для построения эффективного КМР, по сути воспроизводящего результаты расчетов любого заданного сложного приближения, необходимо знать ответы на следующие вопросы: какие варианты инкрементов и их комбинации будут оптимальными для воспроизведения прямого метода расчета; сочетание каких базисных наборов и методов электронной корреляции наилучшим образом подходит для вычисления инкрементов. Также важно определить способы повышения точности КМР.

В данной работе нами изучено влияние указанных факторов на точность КМР. В качестве прямых методов расчетов мы выбрали приближения MP4/6-311+G(fd,p) и MP4/aug-cc-pvTZ, которым соответствует множество вариантов определения инкрементов. Все КМР, приведенные в данной работе, построены таким образом, чтобы воспроизводить результаты указанных методов прямого расчета.

^{*} E-mail: raulia@mail.ru

Таблица 1

Набор модельных соединений

Углеводороды	CH ₃ CH ₃ , CH ₃ CH ₂ CH ₃ , CH ₂ CH ₂ , CH ₃ CHCH ₂ , HCCH
Кислородсодержащие	CH ₂ O, CH ₃ CHO, CH ₃ CH ₂ CHO, CH ₃ CH ₂ OH, CH ₃ CH ₂ OH, CH ₃ CHOHCH ₃ ,
	HCOOH, CH ₃ COOH, CH ₃ CH ₂ COOH, HCOOCH ₃ , CH ₃ COOCH ₃ , oкcupaн,
	оксетан, тетрагидрофуран
Азотсодержащие	CH ₃ NH ₂ , CH ₃ CH ₂ NH ₂ , CH ₃ NHCH ₃ , HCONH ₂ ,CH ₃ CONH ₂ , азиридин,
	азетидин, пирролидин
Фторсодержащие	CH ₃ F, CH ₂ F ₂ , CH ₃ CH ₂ F, CH ₃ CHF ₂ , CH ₂ FCH ₂ F
Хлорсодержащие	CH ₃ Cl, CH ₂ Cl ₂ , CHCl ₃ , CH ₃ CH ₂ Cl, CH ₃ CHCl ₂
Другие	H ₂ O ₂ , CO ₂ , H ₂ S, NH ₃ , H ₂ O, HCN, NH ₂ NH ₂ , Si ₂ H ₆

Точность КМР относительно прямого метода расчета рассматривалась путем сравнения расчетных значений полных энергий найденных для тестового набора молекул, включающего 46 органических соединений (табл. 1).

Методика проведения расчетов. При нахождении энергетических параметров с химической точностью при помощи КМР для каждой молекулы вместо одного осуществляется серия расчетов, но в существенно более простых приближениях. В связи с этим предлагаемым КМР соответствуют следующие схемы:

$$E[MP4/6-311+G(fd,p)] = E[MP4/6-311G(d,p)] + \Delta(+,f) + K,$$
(1)

где $\Delta(+,f)$ — инкремент, учитывающий расширение базисного набора для тяжелых атомов за счет включения дополнительной поляризационной функции f и диффузной функции,

$$E[MP4 / aug-cc-pvTZ] = E[MP4 / cc-pvTZ] + \Delta(aug) + K, \qquad (2)$$

где $\Delta(aug)$ — инкремент, учитывающий расширение базисного набора за счет включения дополнительной диффузной функции.

Соответствующие исследуемым КМР значения инкрементов $\Delta(+, f)$ и $\Delta(aug)$ вычисляются для каждой исследуемой молекулы индивидуально согласно уравнениям

$MP4_{6-311}^{MP2\Delta(+,f)}$	$\Delta(+, f) = E[MP2/6-311 + G(fd, p)] - E[MP2/6-311G(d, p)],$	(3)
MP4 $_{6-31}^{MP2\Delta(+,f)}$	$\Delta(+, f) = E[MP2/6-31 + G(fd, p)] - E[MP2/6-31G(d, p)],$	(4)
$\mathrm{MP4}_{6\text{-}311}^{\mathrm{B3LYP}\Delta(+,f)}$	$\Delta(+, f) = E[B3LYP/6-311 + G(fd, p)] - E[B3LYP/6-311G(d, p)],$	(5)
$MP4_{cc-pvTZ}^{MP2\Delta(aug)}$	$\Delta(aug) = E[MP2/aug-cc-pvTZ] - E[MP2/cc-pvTZ],$	(6)
$MP4_{cc-pvDZ}^{MP2\Delta(aug)}$	$\Delta(aug) = E[MP2/aug-cc-pvDZ] - E[MP2/cc-pvDZ].$	(7)

Во всех представленных выражениях инкремент *К* является эмпирической поправкой, используемой для повышения точности расчетов и по своему смыслу соответствующей поправке $\Delta E^{\rm HLC}$ метода G1 [1], значение которой может быть равно нулю или вычислено по следующим уравнениям:

$$4) K = a \cdot N + b, \tag{8}$$

где *N* — суммарное число электронов в молекуле;

B)
$$K = a \cdot N_{\text{core}} + b \cdot N_{\text{val}} + c \cdot N_{\text{pair}},$$
 (9)

C)
$$K = a \cdot N_{\text{core}} + b \cdot N_{\text{val}} + c \cdot N_{\text{pair}} + y.$$
 (10)

В выражениях (8)—(10) N_{core} — количество остовных электронов молекулы; N_{val} — количество валентных электронов молекулы; N_{pair} — количество неподеленных электронных пар.

Значения коэффициентов *a*, *b*, *c* для уравнений (8)—(10), представленные в табл. 2, получены методом наименьших квадратов. Для этого рассматривали зависимость значений погрешностей КМР от числа электронов во всем наборе тестовых соединений.

Таблица 2

Коэф- фи-	MP4 $_{6-311}^{MP2\Delta(+,f)}$		$MP4_{6-311}^{MP2\Delta(+,f)} MP4_{6-31}^{MP2\Delta(+,f)}$		$\mathrm{MP4}_{6\text{-}311}^{\mathrm{B3LYP}\Delta(+,f)}$			$MP4_{cc-pvTZ}^{MP2\Delta(aug)}$			$MP4_{cc-pvDZ}^{MP2\Delta(aug)}$				
циент	A	В	С	A	В	С	Α	В	С	A	В	С	A	В	С
а	0,76	0,88	0,90	1,53	5,37	5,31	7,43	0,65	0,78	0,18	-0,16	-0,15	0,06	-0,13	-0,29
b	-6,56	0,18	0,31	-24,4	-1,54	-2,08	5,66	8,48	9,74	0,16	0,31	0,43	24,9	0,24	-1,34
С	—	1,92	2,15	—	-2,29	-3,29		33,9	36,3	—	0,88	1,09		8,1	5,15
У		—	-2,80	—	—	11,7			-27,5		—	-2,47			34,7

Значения коэффициентов для вычисления инкремента К

Инкременты A' и B' найдены аналогично, однако при этом использовали набор соединений, ограниченный молекулами, с количеством электронов, равным 20 (см. табл. 4). Также были определены инкременты A_c , применимые только для расчета индивидуальных классов органических соединений. Нахождение каждого инкремента A_c осуществлено на соответствующей выборке модельных молекул из всего набора (табл. 5). Точность расчетов проверяли путем сравнения полученных данных с результатами прямого расчета в приближениях MP4/6-311+G(fd,p) (методы MP4 $_{6-311}^{MP2\Delta(+,f)}$, MP4 $_{6-311}^{B3LYP\Delta(+,f)}$) и MP4/aug-cc-pvTZ (методы MP4 $_{cc-pvTZ}^{MP2\Delta(aug)}$).

Равновесную геометрию для всех соединений находили в приближениях MP2/6-31G(d,p) (методы MP4^{MP2Δ(+,f)}₆₋₃₁, MP4^{B3LYPΔ(+,f)}₆₋₃₁) и MP2/ сс-pvDZ (методы MP4^{MP2Δ(aug)}_{сс-pvTZ}, MP4^{MP2Δ(aug)}_{сс-pvDZ}). Для нахождения значений инкрементов расчет полных энергий проводили в приближениях MP4/6-311G(d,p), MP2/6-311G(d,p), MP2/6-31G(fd,p), MP2/6-31 + G(fd,p), MP4/cc-pvTZ, MP2/aug-cc-pvDZ. Значения полной энергии MP2/6-311+G(fd,p), MP2/cc-pvTZ, MP2/aug-cc-pvTZ определяли из расчетов MP4/6-311+G(fd,p), MP4/cc-pvTZ, MP4/aug-cc-pvTZ соответственно.

Расчеты проводились программой PC Gamess [11].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Судя по результатам расчетов полной энергии (табл. 3) точность всех рассматриваемых КМР при A = 0 представляется неудовлетворительной. Но при этом для методов MP4^{MP2Δ(+,f)} и MP4^{MP2Δ(aug)}, в которых базисные наборы для прямого и промежуточных расчетов имеют одинаковую степень расщепления, наблюдаются меньшие величины средних абсолютных (САО) и максимальных (МО) ошибок. Особенно это характерно для метода MP4^{MP2Δ(aug)}.

Принимая во внимание линейный характер зависимости ошибки расчета методов от числа электронов (см. рисунок) и опыт создания методов G1—G3, мы проанализировали точность рас-

Таблица 3

Максимальные, средние значения погрешностей и коэффициенты корреляции, соответствующие предложенным методам, Дж/моль

K	MP4 $_{6-311}^{MP2\Delta(+,f)}$		MP	$P4_{6-31}^{MP2\Delta(+,f)}$		$MP4_{6-311}^{B3LYP\Delta(+,f)}$			$MP4_{cc-pvTZ}^{MP2\Delta(aug)}$			MP4 ^{MP2Δ(aug)} _{cc-pvDZ}			
	CAO	MO	R	CAO	MO	R	CAO	MO	R	CAO	MO	R	CAO	MO	R
0	13	-49	_	14	109	_	210	-467	_	5,1	16	_	27	104	_
A	2,7	13	0,90	16	82	0,51	31	136	0,89	1,6	9	0,57	15	43	0,03
В	1,0	8	0,98	6,5	35	0,96	16	68	0,98	1,4	8	0,77	12	48	0,42
С	0,8	7	0,99	5	27	0,97	11	23	0,99	1,2	8	0,81	9,2	80	0,66

Зависимость погрешностей расчета полной энергии, полученных по предложенным КМР от общего количества электронов в соединении при *K* = 0

чета полной энергии с использованием предлагаемых КМР с учетом эмпирических поправок, связанных с электронным строением молекул. Представленные в табл. З значения коэффициентов корреляции (R), соответствующие подобной зависимости между ошибками методов и количеством электронов в молекуле, показывают, что результаты расчетов методами MP4^{MP2Δ(+,f)}, MP4^{B3LYPΔ(+,f)} и MP4^{MP2Δ(aug)} могут быть таким образом значительно улучшены.

Для методов MP4^{MP2 $\Delta(+,f)$} и MP4^{MP2 $\Delta(aug)}_{cc-pvDZ} подобная закономерность не является выра$ женной. Это, очевидно, связано с различием базисных наборов, используемых для расчета ба $зового значения полной энергии и для нахождения инкрементов <math>\Delta(+f)$ или $\Delta(aug)$.</sup>

Нами была рассмотрена точность расчета полной энергии по предложенным методам КМР с учетом нескольких эмпирических инкрементов K, зависящих от электронного строения молекул. В случае методов MP4^{MP2 $\Delta(+,f)} и MP4^{MP2<math>\Delta(aug)}_{cc-pvTZ}$ использование эмпирического инкремента A позволяет значительно улучшить точность, средние абсолютные отклонения составляют 2,7 и 1,6 кДж/моль соответственно. Максимальные отклонения в этом случае равны 12 и 9 кДж/моль (см. табл. 3).</sup></sup>

Недостаток определения эмпирической поправки по уравнению (8) в первую очередь связан с отсутствием учета особенностей распределения электронов в молекуле: при таком подходе не учитывается количество остовных, валентных электронов и электронов неподеленных пар. Кроме того, одному значению общего числа электронов в молекуле может соответствовать целый ряд соединений разного строения (см. рисунок). Для устранения данного недостатка методов были введены инкременты *B* и *C*, определяемые по уравнениям (9) и (10) и зависящие от электронного строения молекулы. Использование в методе MP4^{MP2Δ(+,f)} инкрементов *B* и *C* позволило понизить ошибку более чем в 2 раза. Среднее абсолютное отклонение уменьшилось до 1 кДж/моль при максимальном отклонении, равном 7—8 кДж/моль. В методе MP4^{MP2Δ(aug)}

введение указанных поправок не привело к значительному повышению точности. Так, в случае использования поправки *С* максимальное отклонение составило 8 кДж/моль, а средняя ошиб-ка — 1,2 Дж/моль.

Для метода MP4^{MP2 $\Delta(+,f)$} в большинстве случаев использование поправок *B* и *C* приводит к лучшим результатам, чем использование поправки *A*. Исключения из этой закономерности обнаружены при расчетах методом MP4^{MP2 $\Delta(+,f)$} соединений, содержащих тройную связь или элементы третьего периода (PH₃, Si₂H₆), а также в некоторых других случаях (NH₂NH₂). Использование поправок *K* в методах MP4^{MP2 $\Delta(+,f)}₆₋₃₁ и MP4^{MP2<math>\Delta(aug)}_{cc-pvDZ} не позволило достичь химической точности методов (см. табл. 3).</sup>$ </sup>

Различия между приближениями для расчетов базовой энергии и нахождения инкрементов могут заключаться не только в базисных наборах, но и в методах учета элеккорреляции. Например, тронной рассмотренном нами В методе MP4 $^{B3LYP\Delta(+,f)}_{6-311}$ применялись приближения, учитывающие электрон-

Т	а	б	Л	И	Ц	а	4

Максимальные и средние значения погрешностей КМР, включающих поправки А' и В', Дж/моль

Метол	$MP4_{6-2}^{MI}$	$\begin{array}{l} P2\Delta(+,f)\\ 311 \end{array}$	$MP4_{6-2}^{MI}$	$P2\Delta(+,f)$ 31	MP4 $_{6-31}^{MP2\Delta(+,f)}$		
	$\Delta E^0(A')$	$\Delta E^0(B')$	$\Delta E^0(A')$	$\Delta E^0(B')$	$\Delta E^0(A')$	$\Delta E^0(B')$	
CAO	2,49	1,97	16,77	10,33	15,23	9,02	
MO	16,91	18,53	97,78	56,38	93,97	52,36	

ную корреляцию как методом Меллера—Плессе, так и методами DFT.

Как видно из табл. 3, несоответствие в прямом и промежуточных расчетах методов учета электронной корреляции привело к наиболее значительным ошибкам из всех полученных нами. Так, при K = 0 среднее и максимальное абсолютные отклонения равны 211 и 469 кДж/моль соответственно. В то же время наблюдаемая корреляция между величинами погрешностей и размерами молекул указывает на то, что использование эмпирических поправок может значительно увеличить точность метода. Как и в предыдущих случаях, наилучшие результаты были получены при использовании поправки С, использование которой привело к средним и максимальным абсолютным погрешностям, равным 11 и 22 кДж/моль соответственно. Но, несмотря на понижение, величины ошибок метода МР4 $^{B3LYP\Delta(+,f)}_{6-311}$ не лежат в пределах химической точ-

ности. В связи с этим данный метод нельзя считать высокоточным.

В целях изучения возможности использования тестовых наборов, содержащих меньшее число соединений при создании КМР, нами рассмотрена точность вычисления полной энергии в этих же КМР, но с учетом инкрементов А' и В', определенных на подмножестве соединений из полного набора, на примере методов MP4 $_{6-311}^{\text{MP2}\Delta(+,f)}$, MP4 $_{6-31}^{\text{MP2}\Delta(+),\Delta(f)}$ и MP4 $_{6-31}^{\text{MP2}\Delta(+,f)}$.

Судя по результатам расчетов (табл. 4), применение инкрементов А' и В' несколько в меньшей степени сказывается на повышении точности КМР. Например, использование инкремента A' вместо A практически не сказывается на величине средней ошибки, но несколько увеличивает значения максимальных отклонений. Так, в методе $MP4_{6-311}^{MP2\Delta(+,f)}$ максимальная ошибка возросла от 12,4 до 16,9 кДж/моль, а в методах $MP4_{6-31}^{MP2\Delta(+),\Delta(f)}$ и $MP4_{6-31}^{MP2\Delta(+,f)}$ максимальные ошибки увеличились с 82,31 и 75,97 кДж/моль до 97,7 и 94,0 кДж/моль соответственно.

Несмотря на уменьшение набора соединений точность КМР с использованием поправки В' остается выше, чем в случае использования поправки A'. Однако использование поправки B'увеличивает величины как средних, так и максимальных ошибок для всех КМР (см. табл. 3, 4). При этом в процентном соотношении это увеличение существенно выше, чем наблюдаемое в случае применения инкремента A'. Например, для наилучшего КМР МР4^{MP2Δ(+,f)} ухудшение точности составляет 93 и 131 % для средних и максимальных отклонений соответственно. Таким образом, инкремент A, в отличие от инкремента B, оказывается менее чувствительным к размеру тестового набора.

Инкременты A_c , применимые для отдельных классов органических соединений, были определены по данным КМР МР4 $_{6-311}^{\text{MP2}\Delta(+,f)}$ для следующих классов соединений: амины, алканы, спирты, альдегиды, каброновые кислоты, предельные кислородсодержащие циклы, хлори фторсодержащие углеводороды. В результате использования инкрементов А_с полученные погрешности ни для одного соединения тестового набора ряда не превысили 4,0 кДж/моль (табл. 5). Большинство значений погрешностей в этом случае лежат в пределах 1 кДж/моль.

Расчетные данные показывают, что схемы позволяют значительно уменьшить время расчетов (в 3—10 раз). Наибольший выигрыш во времени наблюдался для тех молекул, в состав которых входило наибольшее число тяжелых атомов. Для самых сложных соединений модельного ряда время вычислений уменьшалось до 10 раз.

Таблица 5

Соединение	а	b	Погрешность,	Соединение	а	b	Погрешность,		
КДАК/ МОЛЬ		кдж/моль				кдж/моль			
Пре	едельны	е аминь	I	Предельные карбонильные соединения					
CH ₃ NH ₂			0,464	CH ₂ O			0,061		
CH ₃ CH ₂ NH ₂	-0,42	0,23	0,402	CH ₃ CHO	0.21	0.46	0,122		
CH ₃ NHCH ₃			0,526	CH ₃ CH ₂ CHO	-0,51	-0,40	0,183		
Цикличес	кие пред	дельные	амины	CH ₃ COCH ₃			0,122		
CH ₂ CH ₂ NH			0,016	Пре	дельны	е спирти	Ы		
CH ₂ CH ₂ CH ₂ NH	-0,46	1,23	0,032	CH ₃ OH			0,035		
(CH ₂) ₄ NH			0,016	CH ₃ CH ₂ OH	0.44	0.52	0,070		
Алканы				CH ₃ CH ₂ CH ₂ OH	-0,44	-0,53	0,079		
CH_4			0,009	CH ₃ CHOHCH ₃			0,043		
CH ₃ CH ₃	-0,41	0,82	0,018	Предельни	Предельные карбоновые кислоты				
CH ₃ CH ₂ CH ₃			0,009	НСООН			0,056		
Предельные к	ислород	содержа	ащие циклы	CH ₃ COOH	-0,45	-3,01	0,112		
CH ₂ CH ₂ O			0,031	CH ₃ CH ₂ COOH			0,056		
CH ₂ CH ₂ CH ₂ O	-0,46	-0,07	0,062	Фторсоде	ржащие	углевод	дороды		
$(CH_2)_4O$			0,031	CH ₃ F			0,503		
Хлорсоде	ржащие	углевод	цороды	CH_2F_2			1,278		
CH ₃ Cl	[1,128	CHF ₃			2,571		
CH_2Cl_2			1,942	CF ₄	-0,76	4,72	3,957		
CHCl ₃	-0,91	6,41	3,018	CH ₃ CH ₂ F			2,025		
CH ₃ CH ₂ Cl			2,537	CH ₃ CHF ₂			1,096		
CH ₃ CHCl ₂			1,473	CH ₂ CH ₂			1,668		

Значения коэффициентов a и b поправки A_c для расчетов, проведенных по схеме MP4^{MP2 $\Delta(+,f)$}, и соответствующие абсолютные значения погрешностей, найденные для некоторых классов соединений

выводы

1. Применимость принципа аддитивности ограничена рамками одного базисного набора, и совместное использование двух- и трехкратнорасщепленных базисных наборов при нахождении инкрементов нецелесообразно.

2. Точность комбинированных методов расчета можно существенно повысить при помощи эмпирической поправки, найденной на основе особенностей распределения электронов в молекуле.

3. Различия в методах учета электронной корреляции в приближениях, используемых для расчета базового значения полной энергии и для нахождения инкрементов, нежелательны.

СПИСОК ЛИТЕРАТУРЫ

- 1. Pople J., Head-Gordon M., Fox D. et al. // J. Chem. Phys. 1989. 90, N 10. P. 5622.
- 2. Curtiss L., Jones C., Trucks G. et al. // Ibid. 1990. 93, N 4. P. 2537.
- 3. Curtiss L., Raghavachari K., Trucks G., Pople J. // Ibid. 1991. 94, N 11. P. 7221.
- 4. Curtiss L., Raghavachari K., Pople J. // Ibid. 1993. 98, N 2. P. 1293.
- 5. Baboul A., Curtiss L., Redfern P., Raghavachari K. // Ibid. 1999. 110, N 16. P. 7650.
- 6. Petersson G., Bennett A., Tensfeldt T. et al. // Ibid. 1988. 89, N 4. P. 2193.
- 7. Ochterski J., Peterson G., Montgomery J. // Ibid. 1996. 104, N 7. P. 2598.
- 8. Montgomery J., Frisch M., Ochterski J., Petersson G. // Ibid. 1999. 110. P. 2822.
- 9. Montgomery J., Frisch M., Ochterski J., Petersson G. // Ibid. 2000. 112, N 15. P. 6532.
- 10. Park H., Lee S. // Chem. Phys. Lett. 1999. 301, N 5-6.- P. 487.

11. Грановский А.А. http://classic.chem.msu/gran/gamess/index.html.