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С целью решения проблемы, связанной с тем, что матрица коэффициентов многомерной модели c
ошибками в переменных (ММОП) содержит постоянные столбцы, модель ММОП расширена до частич-
ной многомерной модели с ошибками в переменных (Ч-ММОП) и предложен новый алгоритм модели
Ч-ММОП, основанный на принципе частичной модели с ошибками в переменных (Ч-МОП) и непрямой
корректировке. Алгоритм прост и легко реализуем. Для проверки используется пример преобразования
координат, а результаты сравниваются с существующим алгоритмом модели ММОП, что показывает
эффективность предлагаемого алгоритма. Наконец, алгоритм Ч-ММОП применяется к многоточечной
серой модели (МСМ(1,N)) мониторинга оседания грунта. Результаты показывают, что модель Ч-ММОП,
предлагаемая в данной статье, лучше учитывает влияние ошибок точек мониторинга, а результаты хо-
рошо соответствуют реальной ситуации.
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Aiming at the problem that the coefficient matrix of multivariate errors-in-variables (MEIV) model con-
tains constant columns, the MEIV model is extended to partial multivariate errors-in-variables (P-MEIV), and
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1. Введение

При обработке данных измерений матрица коэффициентов некоторых моделей мо-
жет содержать ошибки. Поскольку метод наименьших полных квадратов (МНПК) [1]
может учитывать ошибку матрицы коэффициентов в модели корректировки, он теоре-
тически является более строгим, чем метод наименьших квадратов (МНК), и в последние
годы привлекает к себе широкое внимание и активно исследуется [2–6]. В модели кор-
ректировки модель с ошибками в переменных (МОП) расширена до частичной модели
с ошибками в переменных (Ч-МОП) [7, 8]. Для методов оценивания (от общего метода
наименьших полных квадратов до метода взвешенных полных наименьших квадратов
(МВПНК)) также был разработан ряд расширенных алгоритмов, таких как метод струк-
турированных полных наименьших квадратов [9], общий метод наименьших квадратов
с ограничениями равенства и неравенства [10–12], робастный метод полных наименьших
квадратов [13], оценивание компонентов дисперсии методом наименьших полных квад-
ратов [14] и т. д. Что касается переменных модели, то параметры корректировки также
расширены от одной переменной до нескольких переменных. Это называется моделью с
многомерными ошибками в переменных (ММОП) [15, 16]. Поскольку благодаря модели
ММОП матрица коэффициентов может стать более компактной, ее лучше использовать
в координатном преобразовании и других моделях; кроме того были разработаны неко-
торые методы оценки [17,18].

Для алгоритмов оценки модели ММОП в основном используются алгоритм Лагран-
жа, алгоритм Ньютона и соответствующий метод матричной декомпозиции, а также
метод преобразования модели ММОП в модель МОП [3, 15–20]. Однако матрица коэф-
фициентов модели ММОП может иметь постоянные столбцы. Приведенные выше мето-
ды специально не обсуждаются; для оценки необходимо определить вес элементов мат-
рицы коэффициентов. При мониторинге оседания грунта многоточечная серая модель
(МСМ(1,N)) [21] может рассматриваться как модель ММОП с постоянным столбцом в
матрице коэффициентов. Чтобы решить проблему, заключающуюся в том, что матри-
ца коэффициентов модели ММОП содержит постоянный столбец, в данной статье мо-
дель ММОП расширена до частичной многомерной модели с ошибками в переменных
(Ч-ММОП). Предложен новый алгоритм модели Ч-ММОП, основанный на частичной
модели с ошибками в переменных (Ч-МОП) и принципе непрямой корректировки. Эф-
фективность алгоритма тестируется на примере преобразования координат. И, наконец,
модель Ч-ММОП применяется к модели МСМ(1,N) мониторинга оседания грунта, ре-
зультаты служат для проверки надежности и эффективности предлагаемого метода.

Статья организована следующим образом: в пункте 2 представлена частичная мно-
гомерная модель с ошибками в переменных и подробно описан алгоритм для Ч-ММОП.
В п. 3 вводится многоточечная серая модель МСМ(1,N) и строится многоточечная серая
модель Ч-ММОП. В п. 4 представлен пример преобразования координат для иллюстра-
ции пригодности предложенных алгоритмов. Модель Ч-ММОП применяется к модели
МСМ(1,N) мониторинга оседания грунта. Некоторые выводы представлены в п. 5.

2. Частичная многомерная модель МОП

Многомерную функциональную модель МОП можно представить в виде [2, 17,18]

Y + EY = (A+ EA) Ξ , (1)
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где Y — матрица наблюдений размерности m×n, EY — матрица корректировки размер-
ности m×n, A — матрица коэффициентов размерности m× r, EA — матрица корректи-
ровки коэффициентов размерности m× r, Ξ — матрица оценки параметров размерности
r × n. Благодаря многомерной структуре матрица коэффициентов может быть более
компактной, также в ней могут быть и постоянные члены. Поэтому приведенная выше
многомерная модель МОП расширена до частичной многомерной модели МОП с ис-
пользованием идеи частичной модели с ошибками в переменных, которая может быть
выражена следующим образом [7]:{

y + ey =
(
Ξ> ⊗ Im

)
(h+Dā),

a+ ea = ā,
(2)

где y = vec(Y ) — выпрямляющий вектор матрицы наблюдений, оператор “vec” ставит
один столбец матрицы под другой, двигаясь слева направо, ey = vec(EY ) — выпрям-
ляющий вектор матрицы корректировки, ⊗ — произведение Кронекера (мы используем
vec(ABC) =

(
C> ⊗A

)
vec(B) [22] из уравнения (1) для уравнения (2)), Im — единичная

матрица размерности m × m, h — постоянный член матрицы коэффициентов, a и ā —
неповторяющиеся элементы и их оценки в матрице коэффициентов A, D — структурная
матрица, ea — значение коррекции неповторяющихся элементов в матрице коэффициен-
тов. После замены уравнения (1) на уравнение (2) структура матрицы коэффициентов
сохраняется, благодаря компактности матрицы коэффициентов моделей МОП. Стоха-
стическую модель Ч-ММОП можно представить в виде

V =

[
ey
ea

]
∼
([

0
0

]
, σ20

[
Qyy Qya

Qay Qaa

])
P = Q−1 =

[
Pyy Pya

Pay Paa

]
, (3)

где σ20 — неизвестный коэффициент дисперсии, Qyy и Qaa — матрица кофакторов векто-
ра наблюдений и неповторяющиеся элементы матрицы коэффициентов соответственно,
Qya — матрица взаимных кофакторов. Если корреляция не учитывается, Qya = Qay = 0.
Критерий корректировки Ч-ММОП можно выразить как

V >PV = min . (4)

Исследования многих алгоритмов наименьших полных квадратов показывают, что
при помощи различных итерационных алгоритмов можно получить оптимальные зна-
чения параметров путем итерации элементов матрицы коэффициентов и параметров
модели корректировки. Следовательно, уравнение (2) можно рассматривать как модель
непрямой корректировки для оценки неповторяющегося элемента ā матрицы коэффици-
ентов при условии наличия исходных значений параметров:{

a =
(
B>PB

)−1
B>PL,

V = Ba− L,
(5)

где B =

[ (
Ξ> ⊗ Im

)
D

It

]
, L =

[
y −

(
Ξ> ⊗ Im

)
h

a

]
. Путем корректировки оцениваемого

элемента матрицы коэффициентов оцениваются параметры уравнения (1). Поскольку
учитывается ошибка матрицы коэффициентов, уравнение (1) может быть выпрямлено:
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[
Im −

(
Ξ> ⊗ Im

)
D
] [ ey

ea

]
= (In ⊗A)x− y, (6)

где vec (EAΞ) =
(
Ξ> ⊗ Im

)
Dea, vec(AΞ) = (In ⊗A)x, где x = vec(Ξ) — вектор выпрям-

ления матрицы параметров.

Пусть V ′ = FV =
[
Im −

(
Ξ> ⊗ Im

)
D
] [ ey

ea

]
. Тогда уравнение (6) также можно

рассматривать как модель непрямой корректировки. Теперь матрица кофакторов модели
имеет вид Q̂ = FQF>.

После корректировки элемента матрицы коэффициентов уравнения (6) необходимо
скорректировать вектор наблюдений для достижения равновесия. Оценивание парамет-
ра можно описать следующим образом:

x =
(
Â>Q̂−1Â

)−1
Â>Q̂−1ŷ, (7)

где Â =
(
In ⊗ vec−1(h+Dā)

)
, vec−1 — обратная операции выпрямления матрицы, ко-

торая восстанавливает вектор в матрицу, E = vec−1(h + Dā) − A, ŷ = y + Ex0. Окон-
чательную оценку параметров можно получить путем поочередной итерации уравнений
(5) и (7). Формула оценки точности параметров D(x) имеет следующий вид [7,17]:

D(x) = σ20

(
Â>Q̂−1Â

)−1
,

σ20 =
V >PV

n(m− r)
.

(8)

С учетом приведенного выше, используя идеи существующих алгоритмов моделей
МОП и Ч-МОП, итерационный алгоритм модели Ч-ММОП, предлагаемый в данной ста-
тье, можно описать следующим образом:

1) получение начальных значений Ξ 0 и x0 параметров с использованием принципа
наименьших квадратов;

2) получение оценки ā неповторяющегося элемента матрицы коэффициентов с учетом
первоначального значения параметра по формуле (5);

3) вычисление оценки Ξ i и xi скорректированных параметров с помощью оценки ā
путем корректировки Â, Q̂ и ŷ по формуле (7);

4) повторение шагов 2 и 3 до тех пор пока ‖Ξ i−Ξ i−1‖ > ε (ε — малое положительное
значение, и в этом вычислении используется 10−12);

5) остановка итерации после получения оценки параметра Ξ и оценка точности пара-
метров по уравнению (8).

3. Многоточечная серая модель Ч-МОП

3.1. Многоточечная серая модель

Был установлен взаимосвязанный участок мониторинга n для мониторинга перио-
да m данных серийных наблюдений x(0)i (k), k = 1, 2, 3, . . . ,m, i = 1, 2, 3, . . . , n. После од-
нократного суммирования мы получим последовательность x(1)i (k) =

∑k
j=1 x

(0)
i (j). Учи-

тывая корреляцию n точек мониторинга, мы можем получить систему n-элементных
дифференциальных уравнений первого порядка [23,24]:
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

dx
(1)
1

dt
=

n∑
i=1

a1ix
(1)
i + b1,

dx
(1)
2

dt
=

n∑
i=1

a2ix
(1)
i + b2,

...

dx
(1)
n

dt
=

n∑
i=1

a2ix
(1)
i + bn.

(9)

Формулу (9) можно записать в матричной форме

dX(1)

dt
= AX(1) +B, (10)

где A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

, B =


b1
b2
...
bn

, X(1)(t) =


x
(1)
1 (t)

x
(1)
2 (t)
...

x
(1)
n (t)

.
Путем дискретизации уравнения (9) многоточечную серую модель можно предста-

вить в виде Y = Ā ·Ξ, в которой параметр Ξ =
[
ξ>a ξ>b

]> может быть оценен с использо-
ванием метода наименьших квадратов, где

Y =


x
(0)
1 (2) x

(0)
2 (2) · · · x

(0)
n (2)

x
(0)
1 (3) x

(0)
2 (3) · · · x

(0)
n (3)

...
...

...
...

x
(0)
1 (m) x

(0)
2 (m) · · · x

(0)
n (m)

 , Ā =


z
(1)
1 (2) z

(1)
2 (2) · · · z

(1)
n (2) 1

z
(1)
1 (3) z

(1)
2 (3) · · · z

(1)
n (3) 1

...
...

...
...

...

z
(1)
1 (m) z

(1)
2 (m) · · · z

(1)
n (m) 1

 ,

z
(1)
i (k) =

1

2

(
x
(1)
i (k − 1) + x

(1)
i (k)

)
, k = 2, 3, . . . ,m.

После получения оценки параметра Ξ из дифференциального уравнения (10) может
быть получено решение X(1)(t) функции временного отклика, а затем предсказанное
значение прогноза многоточечной серой модели может быть получено путем редукции.

3.2. Многоточечная серая модель Ч-ММОП

Очевидно, что при определении параметра Ξ его модель корректировки — это частич-
ная многомерная модель МОП. Поэтому метод, предлагаемый в данной статье, можно
использовать для оценки параметров, а модель его корректировки представлена в урав-
нении (1). Следует отметить, что матрица наблюдений Y состоит из исходной последова-
тельности наблюдений, а матрица коэффициентов A — из их функций. Таким образом,
при оценивании модели Ч-ММОП необходимо рассматривать различные веса. Предпо-
ложим, что σ есть ошибка с одинаковой точностью всех исходных последовательностей
наблюдений. Тогда ошибку элемента матрицы коэффициентов можно выразить следую-
щим образом:
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σ2
z
(1)
i (k)

=
1

4
σ2
x
(1)
i (k−1)

+
1

4
σ2
x
(1)
i (k)

, (11)

где ошибка последовательности σ2
x
(1)
i (k)

= kσ2 после единовременного накопления. Таким

образом, точность формулы (11) можно выразить как

σ2
z
(1)
i (k)

=
2k − 1

4
σ2, k = 2, 3, . . . ,m. (12)

Предположим, что вес исходной последовательности наблюдений равен 1. Тогда вес
выпрямленной матрицы наблюдений Y — это единичный вес Pyy = Im−1, и вес каждого
элемента столбца матрицы коэффициентов может быть выражен следующим образом:

Paa = In ⊗ diag

(
4

3
· · · 4

2m− 1

)
. (13)

Независимо от корреляции между матрицей наблюдений и элементами матрицы ко-
эффициентов для оценки параметров используется алгоритм модели Ч-ММОП, предла-
гаемый в данной статье. Затем выполняется последовательное прогнозирование значений
с использованием модели МСМ(1,N).

3.3. Критерии оценки точности

Для оценки точности моделирования и прогнозирования с использованием модели
МСМ(1,N) обычно используются соответствующие критерии оценки точности. В дан-
ной статье для оценки используются среднеквадратическое отклонение (СКО), средняя
абсолютная ошибка (САО) и средняя относительная ошибка (СОО):

– среднеквадратическое отклонение

СКО =

√√√√ 1

n

n∑
i=1

(xi − x̂i)2 , (14)

– средняя абсолютная ошибка
САО =

1

n

n∑
i=1

(xi − x̂i), (15)

– средняя относительная ошибка

СОО =
1

n

n∑
i=1

|xi − x̂i|
b

, (16)

где xi — прогнозируемое значение, x̂i — измеренное значение.

4. Анализ примера

4.1. Примеры проверки

Для проверки эффективности предлагаемого метода используется пример преобразо-
вания координат. Двумерная модель аффинного преобразования координат может быть
представлена как многомерная модель корректировки. При рассмотрении ошибки мат-
рицы коэффициентов матрица коэффициентов содержит перечень постоянных членов,
поэтому ее можно рассматривать как частичную многомерную модель МОП. Пример
расчета взят из двумерных данных измерений преобразования координат, имеющихся в
литературе [4] (см. таблицу 1), весовая матрица двух множеств данных координат имеет
вид:
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Pxy= diag([18.7817,6.3774,12.6489,17.4769,22.2726,23.9823,13.6804,3.4656,3.7324,6.4377]),

PXY = diag([9.8316, 5.5357, 12.7369, 12.0099, 10.181, 11.3661, 11.147, 5.8834, 9.8322, 7.5678]).

Тогда матрицы частичной многомерной модели МОП преобразования координат можно
записать в виде

Y =


...

...
Xi Yi
...

...

 , Y =


...

...
...

xi yi 1
...

...
...

 , Py = Q−1y = PXY , Pa = Q−1a = Pxy.

Таблица 1. Значение наблюдений координат

Точка Исходная система координат Целевая система координат
x y X Y

1 309.3916 951.6994 339.2178 971.2505
2 −808.56 588.1736 −778.759 607.9502
3 −808.673 −587.454 −778.742 −567.548
4 309.4559 −950.184 339.223 −930.773
5 1000.84 0.639887 1030.171 20.26966

Предлагаемый алгоритм, алгоритм Ньютона [20] и метод Лагранжа (метод Фанга) [3]
использовались для расчета параметров двумерного аффинного преобразования, а усло-
вие остановки итерации было 10−12. Результаты расчетов несколькими методами приве-
дены в табл. 2.

Таблица 2. Результат корректировки

Параметр Предлагаемый алгоритм Алгоритм Ньютона Алгоритм Фанга
ξ11 0.999827207612 0.999827207612 0.999827207612
ξ21 −0.00000722847 −0.00000722847 −0.00000722847
ξ31 29.76150789091 29.76150789091 29.76150789091
ξ12 −0.00017525154 −0.00017525154 −0.00017525154
ξ13 0.999965497834 0.999965497834 0.999965497834
ξ22 19.68377295416 19.68377295416 19.68377295416
σ2
0 0.147294126638 0.147294126638 0.147294126638
t 4 4 4

Из табл. 2 следует, что результаты предлагаемого метода полностью согласуются с ре-
зультатами алгоритма Ньютона и алгоритма Лагранжа, что он реализуем и эффективен
при оценке многомерной модели полных наименьших квадратов. Метод, описываемый
в данной статье, основан на идее модели Ч-МОП и является расширением многомерной
модели МОП до частичной многомерной модели МОП с использованием матричного
преобразования. По сравнению с алгоритмами Ньютона и Лагранжа этот метод проще,
а итерации алгоритма легко реализуемы.

4.2. Мониторинг оседания грунта

Для анализа применения модели Ч-ММОП в мониторинге оседания грунта, пред-
ложенной в данной работе, в качестве примера выбраны данные наблюдений 4-х точек
мониторинга оседания грунта эстакады на скоростной автомагистрали. Данные мони-
торинга представляют собой 15 периодов непрерывного наблюдения (см. табл. 3). По-
скольку точки мониторинга находятся на одной эстакаде, с учетом их корреляции для
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моделирования и прогнозирования следует использовать многоточечную серую модель.
Для моделирования были использованы исходные данные первых 13-ти фаз и выполне-
на оценка прогнозирования последних 2-х фаз. Использовались традиционное решение
МНК и решение МНПК в рамках модели Ч-ММОП, предложенной в данной статье.
Результаты моделирования и прогнозирования точек мониторинга двумя методами по-
казаны на рисунке. Критерии оценки точности, описанные в п. 3.2, используются для
оценки моделей подгонки и прогнозирования. Значения моделей подгонки и прогнози-
рования представлены в табл. 4 и 5 соответственно.

Таблица 3. Исходные данные точек мониторинга

Номер фазы Точка 1 Точка 2 Точка 3 Точка 4
1 2.041 2.366 2.259 1.926
2 5.118 4.739 5.340 4.744
3 6.880 5.712 6.497 4.344
4 9.605 6.951 8.116 7.332
5 10.155 7.948 9.213 7.073
6 9.734 8.148 9.335 7.704
7 10.868 9.558 10.417 8.924
8 10.373 8.572 9.648 8.309
9 9.279 7.899 10.930 8.734
10 11.114 9.780 10.345 9.022
11 10.508 9.074 9.933 8.624
12 11.336 9.446 10.257 8.162
13 11.136 8.005 10.269 8.361
14 11.451 8.974 10.707 9.772
15 11.664 9.706 11.752 9.198

Таблица 4. Точность значений модели подгонки

Критерий МСМ(1,N)/МНК МСМ(1,N)/МНПК
Точка 1 Точка 2 Точка 3 Точка 4 Точка 1 Точка 2 Точка 3 Точка 4

СКО 1.6793 0.9334 1.1120 0.9181 0.7258 0.7079 0.5852 0.6396
САО 1.3093 0.7456 0.8026 0.7102 0.5853 0.5368 0.4528 0.4960
СОО 13.4762 9.2110 8.8401 9.8707 6.9818 6.9182 5.2623 7.1750

Таблица 5. Точность значений модели прогнозирования

Критерий МСМ(1,N)/МНК МСМ(1,N)/МНПК
Точка 1 Точка 2 Точка 3 Точка 4 Точка 1 Точка 2 Точка 3 Точка 4

СКО 1.1617 0.8291 2.1891 2.4815 0.0441 0.4210 0.4124 0.4503
САО 1.0054 0.7956 2.1774 2.3358 0.0320 0.3378 0.3908 0.3970
СОО 8.7459 8.6297 19.5257 24.3815 0.2793 3.7283 3.4333 4.1214

Из рисунка следует, что смоделированные комбинация и прогноз МСМ(1,N), оценен-
ные предлагаемым методом в четырех точках мониторинга, близки к тенденции изме-
нения данных измерений. Судя по точностям моделирования и прогнозирования, пред-
ставленным в табл. 4 и 5, ясно видно, что предлагаемый метод превосходит МСМ(1,N),
оцениваемый с помощью традиционного МНК, что подтверждает эффективность пред-
лагаемого метода при оценивании МСМ(1,N). Следует отметить, что на рисунке также
видно, что данные наблюдений, используемые в этом примере, имеют в отдельные пери-
оды очевидные колебания, которые могут быть вызваны ошибками измерений. Когда в
данных наблюдений есть очевидные ошибки, модель Ч-ММОП, описываемая в данной
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статье, может лучше учитывать влияние ошибок, и результаты расчетов хорошо согла-
суются с фактическими результатами, в то время как традиционное оценивание МНК
приводит к большим колебаниям в прогнозировании. Однако, если в данных наблюде-
ний есть грубая ошибка, алгоритм модели Ч-MMOП, предлагаемой в данной статье,
необходимо расширить.

Рис. Сравнение результатов моделирования и прогнозирования точек мониторинга

5. Выводы

В данной статье многомерная модель МОП расширена до модели Ч-ММОП, осно-
ванной на идее модели Ч-МОП, и предложен новый алгоритм для модели Ч-ММОП,
который легко получить и легко реализовать программно. Результаты подтверждают
правильность и эффективность предложенного алгоритма на примере преобразования
координат и сравнения с существующей многомерной моделью МОП. На этой основе
алгоритм модели Ч-ММОП, предложенный в данной статье, применяется к мониторин-
гу оседания грунта для оценки модели МСМ(1,N). Результаты показывают, что модель
Ч-MMOП, представленная в данной статье, может лучше учитывать влияние ошибок
наблюдений и превосходит традиционную модель МСМ(1,N) при оценивании МНК с
точки зрения точности моделирования и прогнозирования, а результаты оценивания хо-
рошо согласуются с реальными.
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