УДК 532.5.013.2 + 532.593 + 532.529

ДИНАМИКА ФОРМИРОВАНИЯ И ИЗЛУЧЕНИЯ ЦИЛИНДРИЧЕСКОЙ ПОЛОСТИ В КАВИТИРУЮЩЕЙ ЖИДКОСТИ

В. К. Кедринский, Ж. Л. Мальцева, А. А. Черевко

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск, Россия E-mails: kedr@hydro.nsc.ru, maltseva@hydro.nsc.ru, cherevko@hydro.nsc.ru

Впервые получено уравнение динамики формирования и излучения квазипустой пульсирующей цилиндрической полости в жидкости с учетом изменения скорости звука и объемной концентрации кавитационных зародышей. Предложена постановка и проведен численный анализ задачи в безразмерной форме при условии равенства давления в зоне кавитации и внутри цилиндрической полости на ее границе, что позволило установить динамическую связь объемной концентрации (скорости звука) в зоне кавитации с радиусом цилиндрической полости.

Ключевые слова: пузырьковая кавитация, цилиндрическая полость, динамика, излучение.

DOI: 10.15372/PMTF20220601

Введение. Начиная с 40-х гг. ХХ в. в гидродинамических лабораториях США проводятся математические исследования взрывных процессов, в частности динамики состояния волнового поля, возникающего при подводном взрыве сферических зарядов [1]. Основу разработанных математических моделей составляет динамика взрывной полости (сферического заряда) в сжимаемой жидкости.

При изучении динамики взрывных процессов значительную роль сыграла математическая модель Кирквуда — Бете [2], с использованием которой был рассчитан процесс формирования волнового поля и сформулировано условие связи трех времен: время достижения фронтом УВ конкретной точки r в пространстве равно сумме времени, "жестко" связанного с динамикой взрывной полости, и времени задержки. В результате была найдена функция, которая сохранялась в качестве инварианта на характеристике c_0 . В работе [2] было сделано физически обоснованное предположение, что эта функция является также инвариантом на характеристике, распространяющейся со скоростью c + v, превышающей скорость фронта УВ.

Динамические процессы в пузырьковых средах (жидкость — газ) описываются уравнениями сохранения для средних значений плотности, импульса и давления. Большое значение имеет состояние среды, описываемое уравнениями состояния для смеси, жидкого и газообразного компонентов. Полученная система уравнений замыкается динамическим уравнением типа уравнения Рэлея второго порядка:

$$\frac{d\rho}{dt} + \rho \operatorname{div} \boldsymbol{v} = 0, \qquad \frac{d\boldsymbol{v}}{dt} + \rho^{-1} \operatorname{grad} p = 0,$$

© Кедринский В. К., Мальцева Ж. Л., Черевко А. А., 2022

$$\rho \simeq \rho_0 \left(1 + \frac{p - p_0}{c_0^2 \rho_0} \right) (1 - \bar{k}k_0), \tag{1}$$

$$\frac{d^2 \bar{k}}{dt^2} = \frac{3\bar{k}^{1/3}}{\rho_0 R_0^2} \left(p_1(0)\bar{k}^{-\gamma} - p_0 \right) + \frac{1}{6\bar{k}} \left(\frac{d\bar{k}}{dt} \right)^2.$$

Здесь $\bar{k} = k/k_0$; k — концентрация пузырьков; k_0 — начальная концентрация пузырьков; ρ — плотность среды; $\rho_0 = \text{const}$ — плотность жидкости; p — давление в среде; $p_0 = \text{const}$ — давление в жидкости; v — вектор скорости среды; $c_0 = \text{const}$ — скорость звука в жидкости; $R_0 = \text{const}$ — радиус пузырька; $p_1(0)$ — начальное значение давления в полости; γ — показатель адиабаты газа. Уравнения (1) — классическая система уравнений, описывающая динамические процессы в гомогенных пузырьковых средах, полученная на основе близких по постановке и результатам исследований систем уравнений Иорданского [3], Когарко [4] и ван Вингаардена [5] и сформулированная в наиболее простом виде в работе [6]. В системе появляется четвертая функция (объемная концентрация газовой фазы), которая определяется в ходе решения и играет основную роль во взаимосвязи основных параметров.

1. Постановка задачи. Согласно модели Кирквуда — Бете законы сохранения (система (1)) в акустическом приближении после введения потенциала скорости φ для плоской ($\nu = 0$), цилиндрической ($\nu = 1$) и сферической ($\nu = 2$) задач сводятся к следующему уравнению:

$$\Phi_{tt} - c_0^2 \Phi_{rr} - c_0^2 \frac{\nu(2-\nu)}{4r^2} \Phi = 0,$$

где $\Phi = r^{\nu/2} \varphi$. В случае цилиндрической симметрии это уравнение существенно упрощается, если пренебречь членом порядка $\Phi/(4r^2)$:

$$\Phi_{tt} - c_0^2 \Phi_{rr} = 0. (2)$$

В работе [7] с использованием модели с асимптотикой и метода, аналогичного методу Кирквуда — Бете, с помощью которого решена задача для случая сферической симметрии, проведено исследование ударно-волнового поля, возникающего при взрыве заряда с цилиндрической симметрией. Обозначив через G правую часть уравнения сохранения импульса, полученного после введения потенциала скорости, решение уравнения будем искать в виде $\Phi(t - r/c_0)$. Подставляя производные от функций Φ и G по переменным t и r в уравнение (2), получаем уравнение $G_t + c_0G_r = 0$, из которого следует, что функция G инвариантна на характеристике c_0 . Далее следует вполне обоснованное предположение, что функция G становится инвариантом на характеристике c + v [2]:

$$\left(\frac{\partial}{\partial t} + (c+v)\frac{\partial}{\partial r}\right) \left[r^{\nu/2}\left(h + \frac{v^2}{2}\right)\right] = 0 \tag{3}$$

(h -энтальпия). Заменяя в уравнении (3) частные производные на полные, r на y, v на dy/dt, h на H, получаем обобщенное уравнение одиночной полости для симметрий $\nu = 0, 1, 2$:

$$y\left(1-\frac{\dot{y}}{c}\right)\ddot{y} + \frac{3}{4}\nu\dot{y}^{2}\left(1-\frac{\dot{y}}{3c}\right) = \frac{\nu}{2}\left(1+\frac{\dot{y}}{c}\right)H + \frac{y}{c}\left(1-\frac{\dot{y}}{c}\right)\frac{dH}{dt}.$$
(4)

Введем $\bar{y} = y/y_0$ — значение текущего безразмерного радиуса одномерной цилиндрической полости; \bar{y} — производная по времени t. С учетом приближенного характера уравнения (4) в случае цилиндрической симметрии ($\nu = 1$) проведен численный анализ динамики цилиндрической полости при значениях коэффициента $\beta = (3/4)\nu = 5/4$; 1; 3/4, содержащегося в левой части уравнения (4). Результаты численного решения сопоставлялись с экспериментальными данными о взрыве шнуровых зарядов, продукты детонации которых имеют дискретный спектр состояния с переменным показателем плотности в диапазоне $-2.70 \div -1.26$. Установлено, что значение времени расширения полости и максимальное значение ее радиуса, полученные в экспериментах [8, 9] и в расчетах, практически совпали только в случае $\beta = 1$.

Уравнение динамики полости (4) в случае цилиндрической симметрии с учетом гомогенности пузырьковой системы после введения безразмерного времени $dt = y_0 \sqrt{\rho_0/p_0} d\tau$ записывается в виде

$$\bar{y}\left(1-\delta\sqrt{\frac{p_0}{\rho_0}}\frac{\dot{y}}{c_b}\right)\ddot{y} + \left(1-\delta\frac{1}{3}\sqrt{\frac{p_0}{\rho_0}}\frac{\dot{y}}{c_b}\right)\dot{y}^2 = \frac{1}{2}\left(1+\delta\sqrt{\frac{p_0}{\rho_0}}\frac{\dot{y}}{c_b}\right)\left[p_1(0)\,\bar{y}^{-2\gamma}-1\right] - \delta_2\frac{2\gamma}{c_b}\sqrt{\frac{p_0}{\rho_0}}\left(1-\delta_1\sqrt{\frac{p_0}{\rho_0}}\frac{\dot{y}}{c_b}\right)p_1(0)\,\bar{y}^{-2\gamma}\,\dot{y}\,,\quad(5)$$

где точка означает производную по безразмерному времени τ ; c_b — скорость звука в кавитирующей жидкости; показатель адиабаты газа γ принимает одинаковые значения в полости и кавитационном пузырьке. Коэффициенты δ , δ_1 могут принимать значения, равные нулю (все выражения в круглых скобках становятся равными единице) или единице (все акустические поправки учитываются). Коэффициент δ_2 может быть равен единице (производная энтальпии по времени сохраняется и излучение учитывается) или нулю (излучение не учитывается).

Согласно [10] скорость звука в пузырьковой среде при $p = p_0$ равна

$$c_b^2 = \frac{1}{\rho_0} \left(\frac{k}{\rho_1 c_1^2} + \frac{1-k}{\rho_2 c_2^2} \right)^{-1}, \quad \text{или} \quad c_b^2 = \frac{\gamma p_0}{\rho_0 k} \tag{6}$$

(индекс "1" соответствует газовой фазе; "2" — жидкой; k — объемная концентрация газовой фазы). Отсюда можно получить безразмерную формулу для скорости в среде

$$\bar{c}_b = \sqrt{\gamma p_0/(k\rho_0)} / \sqrt{p_0/\rho_0} = \sqrt{\gamma/k} \,,$$

которая используется при исследовании динамики цилиндрической полости.

2. Численный анализ динамики полости и излучения. Ниже приводятся результаты численного анализа динамики излучения, скорости схлопывания полости и объемной концентрации газовой фазы на поверхности полости.

2.1. Влияние скорости звука в двухфазной среде на излучение. Исследуется влияние скорости звука c_b на излучение (зависимость от времени), на динамику полости (зависимость радиуса полости от времени) и на скорость ее схлопывания. Анализ уравнения (5) выполнен для трех значений скорости звука $c_b = 1,16 \cdot 10^3$; $1,16 \cdot 10^4$; $1,50 \cdot 10^5$ см/с (рис. 1). Скорость звука определяется уравнением (6) при значении концентрации $k_0 = 6 \cdot 10^{-5}$.

При скорости звука $c_b = 1,16 \cdot 10^4$ см/с амплитуда излучения уменьшается в 40 раз, при $c_b = 1,16 \cdot 10^3$ см/с — практически в 60 раз по сравнению с амплитудой излучения при $c_b = 1,5 \cdot 10^5$.

На рис. 2 представлена зависимость максимальной амплитуды излучения p^*_{\max} от начального давления в полости $p_1(0)$.

2.2. Влияние начального давления в полости на объемную концентрацию и излучение. Рассматривается задача, в которой давление в газовой полости, равное $p_1(0)\bar{y}^{-2\gamma}$, при начальном условии $\bar{y}(0) = 1$, $\dot{y}(0) = 0$ заменяется на давление $\bar{y}^{-2\gamma}$, при равенстве давлений $p_1(0)/p_0 = 1$ и при начальном значении $\bar{y}(0) = \bar{y}_d$, соответствующем заданному

Рис. 1. Излучение и динамика схлопывания полости при различных значениях скорости звука:

а, $\bar{6} - c_b = 1.5 \cdot 10^5 \text{ см/с} (p_{\max}^* = 6.2746 \cdot 10^5, \dot{\bar{y}}_{\max} \approx -150),$ в, $e - c_b = 1.16 \cdot 10^4 \text{ см/c} (p_{\max}^* = 1.4 \cdot 10^3, \dot{\bar{y}}_{\max} \approx -21),$ д, $e - c_b = 1.16 \cdot 10^3 \text{ см/c} (p_{\max}^* = 27.7, \dot{\bar{y}}_{\max} \approx -2.7);$ а, в, \bar{d} — зависимость радиуса полости \bar{y} от времени t, $\bar{6}$, e, e — зависимости давления в полости p^* (1) и скорости изменения ее радиуса $\dot{\bar{y}}$ (2) от времени t

Рис. 2. Зависимость амплитуды излучения p_{\max}^* от начального давления в полости $p_1(0)$:

сплошная линия — $\lg\left(p^*_{\max}\right)=0.17\,{\lg}^{-2}(p_1)+2.63\,{\lg}^{-1}(p_1)-1.77,$ штриховая — результаты численного анализа

давлению $p_1(0)$. Используется явная зависимость (6) между скоростью звука c_b и концентрацией k. Выражение (5) для безразмерной энтальпии H имеет вид

$$H = \frac{p_0}{\rho_0} \, [\bar{y}^{-2\gamma} - 1].$$

В зоне кавитации динамика давления на границе полости полностью определяется динамикой давления в цилиндрической полости. Если в любой момент времени на границе полости имеет место равенство

$$\bar{k}^{-\gamma} = \bar{y}^{-2\gamma},\tag{7}$$

то в определении скорости звука c_b (6) объемную концентрацию $\bar{k} = k/k_0$ можно заменить на переменную $\bar{y} = y/y_0$. Полученное при этом динамическое уравнение цилиндрической полости позволяет определить динамику концентрации кавитационной зоны при непрерывном изменении давления внутри полости:

Исследуем динамику полости в зависимости от начального давления в ней в широком диапазоне значений от 10^{-5} (глубокий вакуум) до 10^{-2} при $\delta = \delta_1 = \delta_2 = 1$ и при $\delta = \delta_1 = 0$.

Функции $\bar{y}(\tau), \dot{\bar{y}}(\tau),$ производная по времени от энтальнии $p^* = dH/d\tau$ (излучение) вычисляются в диапазоне значений давления $p_1 = 10^{-5} \div 10^{-2}$.

Расчеты с использованием полного уравнения при глубоком вакууме $(p_1 = 10^{-5})$ были выполнены для того, чтобы уменьшить остроту сигналов и амплитуду абсолютных величин исследуемых функций. На рис. 3 представлены графики решения, полученного с использованием полного уравнения с учетом акустических поправок при $p_1 = 10^{-5}$ и $\delta = \delta_1 = \delta_2 = 1$.

Дальнейшие расчеты проводились при следующих значениях коэффициентов: $\delta = \delta_1 = 0$, $\delta_2 = 1$, $k_0 = 10^{-5}$, $\gamma = 1,33$, $p_0 = 10^6 \text{ г/(см} \cdot \text{c}^2)$, $\rho_0 = 1 \text{ г/см}^3$. Результаты вычислений при этих значениях представлены на рис. 4.

Значения основных параметров излучения и скорости схлопывания полости приведены в табл. 1 ($\Delta \tau$ — ширина импульса давления p^*).

Рис. 3. Зависимости излучения p^* (1) и скорости схлопывания полости \dot{y} (2) от времени τ при $\delta = \delta_1 = \delta_2 = 1$ и $p_1 = 10^{-5}$ ($p^*_{\max} = 1.6 \cdot 10^7$, $\dot{y}_{\max} \approx -3 \cdot 10^3$)

Т	a	б	л	и	П	a	1
-	00	~	01	**		00	_

Основные параметры излучения

p^*_{\max}	${\dot {ar y}}_{ m min}$	p_1	$\delta = \delta_1$	$\Delta \tau$
$1,\!61\cdot 10^7$	$-2,92\cdot 10^3$	10^{-5}	1	$1,41628076 \div 1,41628086$
$1,04\cdot 10^6$	$-7,55\cdot10^2$	10^{-4}	0	$1,4143365 \div 1,4143387$
$1,22\cdot 10^5$	$-2,\!68\cdot 10^{2}$	$5 \cdot 10^{-4}$	0	$1,414825 \div 1,414842$
$4,50\cdot 10^4$	$-1,\!68 \cdot 10^{2}$	10^{-3}	0	$1,415440 \div 1,415475$
$2,\!81 \cdot 10^{3}$	-49,31	$5 \cdot 10^{-3}$	0	$1,42030 \div 1,42059$
$5,96\cdot 10^2$	-26,21	10^{-2}	0	$1,4255 \div 1,4272$

Задача о динамике цилиндрической полости в кавитирующей жидкости основана на равенстве адиабаты кавитирующей жидкости на внешней стороне границы полости и адиабаты газовых продуктов на внутренней стороне границы (7). При этом газожидкостное состояние кавитирующей внешней границы полости считается равновесным по отношению к давлению и массовой скорости (в каждый момент времени давление в пузырьках равно давлению газа в полости).

С физической точки зрения должна существовать зависимость между интенсивностью излучения и максимальной скоростью схлопывания полости. Из результатов численных расчетов (рис. 5) следует, что в логарифмических координатах графиком этой зависимости является практически прямая линия.

С использованием уравнения (8) исследована динамика концентрации кавитационной зоны при непрерывном изменении давления внутри полости в предположении равенства адиабат на границе полости (7) при начальном значении $\bar{y}(0) = \bar{y}_d$, соответствующем заданному давлению $p_1(0)$. Результаты этого исследования приведены в табл. 2 ($\dot{\bar{y}}_{\text{max}}$ — максимальные по модулю отрицательные значения скорости при схлопывании).

Из проведенных расчетов следует, что увеличение начального размера цилиндрической полости от 2,275 до 719,680 приводит к увеличению максимального излучения (от $1,78 \cdot 10^{-3}$ до $5,8 \cdot 10^{3}$), существенному увеличению объемной концентрации газовой фазы (от $5,20 \cdot 10^{-6}$ до $5,18 \cdot 10^{-1}$) и максимальной по модулю отрицательной скорости (от $-7,50 \cdot 10^{-1}$ до $6,97 \cdot 10^{3}$).

Рис. 4. Зависимости излучения p^* (1) и скорости схлопывания полости \dot{y} (2) от времени τ при $\delta = \delta_1 = 0, \, \delta_2 = 1$ и различных значениях p_1 : $a - p_1 = 10^{-4} \ (p^*_{\max} \approx 10^6, \, \dot{y}_{\max} \approx -7.7 \cdot 10^2), \, \delta - p_1 = 10^{-3} \ (p^*_{\max} \approx 4.5 \cdot 10^4, \, \dot{y}_{\max} \approx -1.7 \cdot 10^2), \, s - p_1 = 10^{-2} \ (p^*_{\max} \approx 6 \cdot 10^2, \, \dot{y}_{\max} \approx -2.62)$

Рис. 5. Зависимость максимальной амплитуды излучения $p^*_{\rm max}$ от максимальной по модулю скорости схлопывания $|\dot{\bar{y}}_{\rm min}|$: сплошная линия — $p^*_{\rm max}=0,002\,77\,|\dot{\bar{y}}_{\rm min}|^{1,645},$ штриховая — результаты численного анализа

Таблица 2

\bar{y}_d	${\dot {ar y}}_{ m max}$	p^*_{\max}	$ar{k}_{ ext{max}}$	$ar{k}_{\min}$
2,275	-0,75	0,00178	$0,52 \cdot 10^{-5}$	$5,68 \cdot 10^{-7}$
$5,\!179$	-3,03	0,01610	$2,68 \cdot 10^{-5}$	$2,05 \cdot 10^{-7}$
11,780	-11,34	0,14561	$1,39 \cdot 10^{-4}$	$7,31 \cdot 10^{-8}$
26,820	-41,44	$1,\!24103$	$7,96 \cdot 10^{-4}$	$2,79 \cdot 10^{-8}$
$61,\!050$	-149,75	1,28	$3,72 \cdot 10^{-3}$	$1,10 \cdot 10^{-8}$
$138,\!940$	-539,05	8,44	$1,93 \cdot 10^{-2}$	$4,38 \cdot 10^{-9}$
$316,\!220$	$-1938,\!13$	$6,91\cdot 10^2$	$1,00 \cdot 10^{-1}$	$1,75 \cdot 10^{-9}$
$719,\!680$	-6966,20	$5,\!80\cdot10^3$	$5,18 \cdot 10^{-1}$	$7,00 \cdot 10^{-10}$

Значения параметров излучения, объемной концентрации и максимальной скорости схлопывания при различных значениях начального радиуса цилиндрической полости

Заключение. Впервые получено уравнение и в безразмерном виде решена задача о динамике формирования и излучения квазипустой пульсирующей цилиндрической полости в жидкости с учетом изменения скорости звука и объемной концентрации кавитационных зародышей. Условие равенства давлений в зоне кавитации и внутри цилиндрической полости на ее границе позволило установить динамическую связь объемной концентрации (скорости звука) в зоне кавитации с радиусом цилиндрической полости. Полученное динамическое уравнение цилиндрической полости, в котором не учитывается явно скорость звука в кавитирующей жидкости, позволяет исследовать динамику концентрации кавитационной зоны при непрерывном изменении давления внутри полости. Построены зависимости амплитуды излучения от начального давления в полости во всем диапазоне значений приложенного давления от 10^{-5} (глубокий вакуум) до 10^{-2} . Неожиданным является практически прямолинейный характер (в логарифмических координатах) зависимости между интенсивностью излучения и максимальной скоростью схлопывания полости.

ЛИТЕРАТУРА

- 1. Коул Р. Подводные взрывы. М.: Изд-во иностр. лит., 1950.
- Kirkwood J. G., Bethe H. A. The foundations of the propagation theory / OSRD. N 588. S. l., 1942.
- 3. **Иорданский С. В.** Об уравнениях движения жидкости, содержащей пузырьки газа // ПМТФ. 1960. № 3. С. 102–110.
- Когарко Б. С. Об одной модели кавитирующей жидкости // Докл. АН СССР. 1961. № 6. С. 1331–1333.
- van Wijngaarden L. On the equations of motion for mixtures of liquid and gas bubbles // J. Fluid Mech. 1968. V. 33. P. 465–474.
- Кедринский В. К. Распространение возмущений в жидкости, содержащей пузырьки газа // ПМТФ. 1968. № 4. С. 29–34.
- Rice O. K., Ginell R. Final report on the theory of propagation in the case of cylindrical symmetry / OSRD. N 3950. S. l., 1944.
- Кедринский В. К., Кузавов В. Т. Динамика цилиндрической полости в сжимаемой жидкости // ПМТФ. 1977. № 4. С. 102–106.
- 9. Кедринский В. К. Создание специальных ударных труб и исследования кумуляции жидких цилиндрических оболочек во вращающейся системе // ПМТФ. 2022. Т. 63, № 1. С. 5–10.
- 10. **Ляхов Г. М.** Ударные волны в многокомпонентных средах // Изв. АН СССР. Сер. Механика и машиностроение. 1959. № 1. С. 46–49.

Поступила в редакцию 26/X 2022 г., после доработки — 26/X 2022 г. Принята к публикации 27/X 2022 г.