УДК 539.375

ИЕРАРХИЯ КРИТЕРИЕВ ПРОЧНОСТИ СТРУКТУРИРОВАННЫХ ХРУПКИХ СРЕД. САТЕЛЛИТНОЕ ЗАРОЖДЕНИЕ МИКРОТРЕЩИН

В. М. Корнев

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

Изучается процесс квазистатического роста плоских трещин в средах с регулярными структурами. Рассматриваются такие структуры, каждая из которых характеризуется одним линейным размером. Предлагаются согласованные дискретно-интегральные критерии прочности для трещин нормального отрыва для каждой из структур. Получены оценки критического коэффициента интенсивности напряжений и критических длин трещин нормального отрыва для трех структур. Для этих критических параметров в полученных соотношениях возможен предельный переход, когда коэффициент интенсивности напряжений и длины трещин стремятся к нулю (в классических соотношениях подобный предельный переход отсутствует). Модификации предложенных критериев позволяют описать сателлитное зарождение микротрещины перед вершиной макротрещины, когда имеется специальное расположение монокристаллических зерен материала в окрестности вершины макротрещины.

ВВЕДЕНИЕ

В последнее время все большее внимание уделяется исследованиям прочности и разрушения твердых тел с учетом реальной структуры материала, из которого изготовлена конструкция. Еще Г. Нейбер предлагал давать заключение о разрушении при наличии концентрации напряжений только после осреднения напряжения на поверхности зерен материала и сравнения полученных осредненных напряжений с прочностными характеристиками твердого тела со структурой [1]. В. В. Новожилов кроме осреднения для твердых кристаллических тел ввел в рассмотрение и необходимый, и достаточный критерии хрупкой прочности [2]. Следуя В. В. Новожилову, в работах [3, 4] изучен достаточный критерий хрупкой прочности для реальных потенциалов межатомного взаимодействия, когда перед вершиной трещины имеются вакансии. В работе [5] предложены дискретно-интегральные критерии для трех типов трещин, в котором пределы осреднения зависят от размеров и расположения дефектов в окрестности вершины трещины. По терминологии В. В. Новожилова предложенные в [5] критерии (при отсутствии дефектов в материале) становятся необходимыми. Характерные линейные размеры твердых тел, рассмотренных в работах Г. Нейбера [1], В. В. Новожилова [2] и автора данной статьи [3–5], отличаются на несколько порядков, так как в работе [1] изучались зернистые металлические материалы, а в работах [2–5] — кристаллические. Обоснование процедуры осреднения в критериях Нейбера — Новожилова приведено в работах С. Е. Михайлова [6, 7]. Следует отметить публикации [8–10], относящиеся к прочности трещиноватых пористых тел регулярной структуры, причем характерный линейный размер описывает макропористость этой структуры. Вообще говоря,

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 98-01-00692).

поле напряжений не имеет особенности в вершинах тупых трещин [1, 3, 8–10]. Уточнение необходимого и достаточного критериев хрупкой прочности В. В. Новожилова для кристаллических тел позволило количественно описать эффект Ребиндера [11–13].

Когда формулируются критерии прочности как для тупых, так и для острых трещин для сплошных сред со структурой, естественно использовать подход Нейбера — Новожилова.

1. НАПРЯЖЕННЫЕ СОСТОЯНИЯ В ОКРЕСТНОСТИ ВЕРШИНЫ ТРЕЩИН

1.1. Механические модели для трещин нормального отрыва. Изучается процесс квазистатического роста плоских трещин в средах с регулярными структурами, каждая из которых характеризуется одним линейным размером. Линейные размеры для кристаллических структур и массивных строительных конструкций могут изменяться по порядку величины от 10^{-7} до 10^2 см. Две соседние структуры не оказывают существенного влияния друг на друга, когда их характерные размеры отличаются на два порядка. В рассматриваемом диапазоне изменения линейных размеров с учетом высказанных ограничений возможно не более пяти согласованных критериев. Пусть трещиноватое твердое тело содержит иерархию регулярных структур (i^0 — общее число структур), таких что их характерные линейные размеры r_i ($i = 1, 2, ..., i^0$) упорядочены следующим образом: $r_i \gg r_{i+1}$ и каждый линейный размер r_i отличается от последующего r_{i+1} не менее чем на два порядка. Отдельные дискретно-интегральные (необходимые) критерии прочности предложены в работах [1–8] для трещин нормального отрыва для различных структур. Отметим, что классический подход, когда учитываются только коэффициенты интенсивности напряжений (КИН) $K_I^{(i)}$ в каждой из структур, здесь неприменим, так как для некоторых структур поле напряжений может не содержать особенность, т. е. $K_I^{(i^*)} \equiv 0$, $i^* = 1, 2, \dots, i^0$. Кроме того, возникают некоторые трудности при определении понятия теоретической прочности материала каждой структуры. Заметим, что для кристаллических тел это идеальная прочность (см. [14]).

В каждой структуре рассматриваются только плоские прямолинейные трещины, причем такие, что плоскости их совпадают, а прямолинейные фронты параллельны, т. е. изучается плоская задача линейной теории упругости. Предлагается семейство согласованных для каждой структуры дискретно-интегральных критериев хрупкой прочности для трещин нормального отрыва

$$\frac{1}{k_i r_i} \int_{0}^{n_i r_i} \sigma_y^{(i)}(x_i, 0) \, dx_i \leqslant \sigma_m^{(i)}, \qquad i = 1, 2, \dots, i^0, \quad i^0 \leqslant 5.$$
(1.1)

Здесь $\sigma_y^{(i)}$ — нормальные напряжения на продолжении трещин (они могут иметь или не иметь сингулярности); $O_i x_i y_i$ — прямоугольные системы координат, ориентированные относительно правых частей трещин разного масштаба (начала координат для трещин разных масштабов могут не совпадать, в этом случае соответствующим образом изменяются пределы интегрирования в (1.1)); r_i — характерный линейный размер конкретной структуры; n_i и k_i — целые числа $(n_i \ge k_i)$; k_i — число активных связей, действующих в вершине трещины *i*-й структуры; $n_i r_i$ — интервалы осреднения; $\sigma_m^{(i)}$ — теоретические прочности материала конкретной структуры (для кристаллических тел это идеальная прочность совершенных кристаллов [14]).

Пределы осреднения напряжений в дискретно-интегральных критериях (1.1) поставлены в зависимость от наличия, размера и расположения микродефектов *i*-й структуры в окрестности вершины трещины $(n_i \ge k_i)$. Величины этих осредненных напряжений [1, 2] не должны превосходить теоретической прочности на разрыв идеального материала *i*-й структуры. Величины k_i/n_i характеризуют поврежденность *i*-го материала на продолжении трещины. При конкретной реализации [15, 16] нелокального критерия прочности [6, 7] не принимается во внимание поврежденность материала (см. соотношения (5) из [15] и (12) из [16]).

Поля напряжений $\sigma_y^{(i)}$ на продолжении трещин можно вычислить после решения соответствующих линейных задач теории упругости при заданной системе нагрузок (i^0 — общее число этих задач). Предлагаемый подход с учетом иерархии структур иллюстрирует рис. 1 (эмблема V Международной конференции по основам разрушения): 1 — макроуровень (стандартный образец); 2 мезоуровень (регулярная зернистость материала); 3 — микроуровень (конкретная реализация атомной структуры в окрестности вершины трещины). В простейших случаях удается получить исчерпывающую информацию о полях напряжений $\sigma_y^{(i)}$ на

продолжении трещин при произвольном *i*, причем $\sigma_y^{(i)} = F(\sigma_{\infty}^{(1)})$, где F — некоторая функция; $\sigma_{\infty}^{(1)}$ — напряжения, действующие по нормали к плоскости трещины и заданные на бесконечности или на некотором контуре тела для первой структуры. Используя представление решения для напряжений на продолжении острых трещин y = 0 через КИНы $K_I^{(i)}$, можно записать

$$\sigma_y^{(i)}(x_i, 0) \simeq \sigma_\infty^{(i)} + \frac{K_I^{(i)}}{(2\pi x_i)^{1/2}}, \qquad i = 1, 2, \dots, i^0.$$
(1.2)

В (1.2) выписаны только основные члены, характеризующие напряженное состояние в окрестности вершины трещины, причем второй член имеет интегрируемую особенность; соотношение (1.2) соответствует расположению начала координат в вершине трещины. В (1.2) присутствует гладкая составляющая решения, что позволяет описывать зарождение трещин на любом шаге.

Укажем приближенный способ построения $\sigma_y^{(i)}$ для пористых структур с трещинамивырезами, когда i^{00} — число пористых структур ($i^{00} \leq i^0$). Пусть для i = 1, т. е. для первой структуры, имеется пористая среда. Строим решение для макроструктуры i = 1 на первом шаге для внутренней или краевой трещины, используя известные напряжения $\sigma_{\infty}^{(1)}$, действующие по нормали к плоскости трещины. Получаем поле напряжений в окрестности вершины тупой трещины. Представление решения для напряжений $\sigma_y^{(1)}$ на продолжении тупой трещины, имеющей радиус закругления ρ_1 , имеет более сложный вид, чем (1.2). Эти напряжения $\sigma_{\infty}^{(1)}$ можно представить в виде (1.2) только в пределе при $\rho_1 \to 0$. Если напряжения $\sigma_{\infty}^{(1)}$ заданы, то напряжения $\sigma_{\infty}^{(i)}$ при $1 < i \leq i^{00}$ определяются из соотношений

$$\int_{0}^{i} \sigma_{y}^{(i)}(x_{i},0) \, dx_{i} = \sigma_{\infty}^{(i+1)}, \qquad i = 1, 2, \dots, i^{00} - 1.$$
(1.3)

Осредненные напряжения $\sigma_{\infty}^{(2)}$ используются как в критерии (1.1) при i = 1, так и для формулировки краевых условий задачи теории упругости для тупой трещины в следующей

пористой структуре i = 2. При i = 2 строится напряженное состояние $\sigma_y^{(2)}(x_2, 0)$ (см. аналогичное соотношение (1.2) при i = 2). Как правило, при i > 1 получаются задачи для краевых трещин, затем проводится осреднение по соотношению (1.3) при i = 2, и т. д. (см. критерии (1.1) и соотношения (1.2), (1.3)). После соответствующих преобразований имеем оценку критического КИНа $K_I^{*(i)}$ острой трещины нормального отрыва

$$K_I^{*(i)} / \sigma_\infty^{(i)} \leqslant [(\sigma_m^{(i)} / \sigma_\infty^{*(i)})(k_i / n_i) - 1](\pi n_i r_i / 2)^{1/2}, \qquad i = 1, 2, \dots, i^0,$$
(1.4)

где $\sigma_{\infty}^{*(i)}$ — критическая величина $\sigma_{\infty}^{(i)}$. Модификация оценки (1.4) для тупой трещины приведена ниже.

Построим необходимые критерии хрупкой прочности для среды, имеющей три структурных уровня $i^0 = 3$ (рис. 2). Используется принцип микроскопа, позволяющий более подробно изучать поведение материала в окрестности вершины трещины. Изучается пористое твердое тело ($i^{00} = 1$) с внутренней макротрещиной, в вершине которой имеется микротрещина. Пусть неограниченная пористая среда содержит регулярно расположенные цилиндрические пустоты, центры которых образуют правильную решетку с квадратной ячейкой [8–10]. Внутренняя макротрещина длиной $2l_{n_1k_1}^{(1)}$ возникает из-за обрыва некоторого количества связей в пористом теле регулярного строения (рис. 2, *a*). Допустим, что пористое тело нагружено на бесконечности напряжениями $\sigma_{\infty}^{(1)}$. Расстояние между центрами цилиндрических пустот равно r_1 , ρ_1 — радиус цилиндрических пустот. Пусть пористый материал перед вершиной макротрещины имеет микроповреждения, описываемые параметрами $n_1 = 2, k_1 = 1, т. е.$ в этой вершине действует одна силовая связь (рис. 2, a). Допустим, материал перемычек пористого тела состоит из зерен монокристаллов, расположение которых показано на рис. 2, б (r_2 — характерный линейный размер зерна). Пусть первая силовая перемычка имеет поверхностную трещину, тогда в другом масштабе имеем краевую трещину длиной $l_{n_2k_2}^{(2)}$ для зернистого материала регулярной структуры (микроповреждения зернистой структуры описываются параметрами $n_2 = 2$, $k_2 = 1$). Процедура определения $\sigma_{\infty}^{(2)}$ описана выше. Пусть вершина трещины заканчивается в монокристаллическом зерне материала так, как показано на рис. 2, в. Рассматривается

простейшая кристаллическая решетка с «удачной» ориентацией относительно плоскости трещины, r_3 — постоянная кристаллической решетки, крестиком отмечена одна вакансия $(n_3 = 2, k_3 = 1)$. Для этого случая вновь получается краевая трещина длиной $l_{n_3k_3}^{(3)} = l_{n_2k_2}^{(2)}$ при заданном нагружении $\sigma_{\infty}^{(2)}$. Очевидно, что $r_1 \gg r_2 \gg r_3$.

Приведем три согласованных критерия: для пористого тела с внутренней трещиной (рис. 2,a), для зернистого материала с краевой трещиной (рис. $2,\delta$) и для монокристаллического материала с краевой трещиной (рис. $2, \delta$).

Ниже приводятся соотношения для критических параметров внутренней острой, краевой острой и внутренней тупой трещин, которые используются при построении всех согласованных необходимых критериев.

1.2. Внутренняя острая трещина. Рассматривается внутренняя трещина длиной $2l_{n_ik_i}^{(i)}$. Напомним, что КИН такой трещины равен $K_I^{(i)} = \sigma_{\infty}^{(i)} \sqrt{\pi l_{n_ik_i}^{(i)}}$. Подставляя критический КИН для этой трещины в соотношение (1.4), получим критическую длину $2l_{n_ik_i}^{*(i)}$ острой внутренней трещины нормального отрыва

$$2l_{n_ik_i}^{*(i)}/r_i = (\sigma_m^{(i)}/\sigma_\infty^{*(i)} - n_i/k_i)^2 k_i^2/n_i.$$
(1.5)

1.3. Краевая острая трещина. Рассматривается полуплоскость с краевой трещиной длиной $l_{n_ik_i}^{(i)}$, когда растяжение $\sigma_{\infty}^{(i)}$ приложено перпендикулярно трещине. КИН такой трещины равен $K_I^{(i)} = 1,1215\sigma_{\infty}^{(i)}\sqrt{\pi l_{n_ik_i}^{(i)}}$ (см. [17]). Подставляя критический КИН для этой трещины в соотношение (1.4), получим критическую длину $l_{n_ik_i}^{*(i)}$ острой краевой трещины нормального отрыва

$$2.52 l_{n_i k_i}^{*(i)} / r_i = (\sigma_m^{(i)} / \sigma_\infty^{*(i)} - n_i / k_i)^2 k_i^2 / n_i.$$
(1.6)

1.4. Тупая внутренняя трещина. Рассматривается внутренняя тупая трещина длиной $2l_{n_ik_i}^{(i)}$, точнее, трещина, имеющая радиус закругления в вершине ρ_i . Напряженнодеформированное состояние в вершине узкого выреза известно [17]. Отметим, что при конечном ρ_i поле напряжений не имеет особенности в вершине трещины. После соответствующих преобразований [5] получим критический КИН выреза $K_I^{*(i)}$, выражающийся через КИН $K_I^{*0(i)}$ для острой трещины той же длины:

$$K_I^{*(i)} = K_I^{*0(i)} (\rho_i / (2n_i r_i) + 1)^{1/2}.$$
(1.7)

Очевиден предельный переход от тупой трещины к острой при $\rho_i \to 0$. Используя равенство (1.7) и КИН острой трещины $K_I^{0(i)} = \sigma_\infty^{(i)} \sqrt{\pi l_{n_i k_i}^{(i)}}$, получим критическую длину тупой трещины

$$2l_{n_ik_i}^{*(i)}/r_i = (\sigma_m^{(i)}/\sigma_\infty^{*(i)} - n_i/k_i)^2 (\rho_i/(2n_ir_i) + 1)k_i^2/n_i.$$
(1.8)

В выражения (1.7), (1.8) для критических параметров входит безразмерная величина ρ_i/r_i , характеризующая кривизну выреза.

1.5. Кривые разрушения. Предельный переход к бездефектным материалам. Рассмотрим кривые, описывающие разрушение по предлагаемым критериям Нейбера — Новожилова (см. исходный критерий (1.1) и реализации этого критерия в (1.5), (1.6) для соответствующих типов трещин) и классическому критерию, когда заданы длины внутренних трещин $2l_{n_ik_i}^{*(i)}/r_i$.

Приведем соотношения, определяющие безразмерные параметры критических нагрузок, для тупой (структуры имеют микродефекты: $n_i > k_i$) и острой (микродефекты отсутствуют: $n_i = k_i$) внутренних трещин:

$$\frac{\sigma_{\infty}^{*(i)}}{\sigma_m^{(i)}} = \left[\frac{n_i}{k_i} + \frac{\sqrt{n_i}}{k_i}\sqrt{\frac{2l_{n_ik_i}^{*(i)}}{r_i}}\left(1 + \frac{\rho_i}{2n_ir_i}\right)^{-1/2}\right]^{-1}, \quad \frac{\sigma_{\infty}^{*(i)}}{\sigma_m^{(i)}} = \left(1 + \sqrt{\frac{2l_{n_ik_i}^{*(i)}}{n_ir_i}}\right)^{-1}.$$
 (1.9)

В первом соотношении возможен предельный переход от тупой трещины к острой, когда $\rho_i \to 0$. При произвольном *i* соотношения (1.9) можно рассматривать как уравнения, описывающие единую кривую разрушения, причем единицами измерений для напряжений и линейных размеров служат соответственно теоретические прочности $\sigma_m^{(i)}$ и характерные линейные размеры r_i регулярных структур. При оценке прочности материалов с дефектами и бездефектных материалов, имеющих достаточно длинные тупые трещины, можно использовать приближенные равенства, связывающие критические параметры:

$$\sigma_{\infty}^{*(i)} / \sigma_m^{(i)} \simeq (k_i / \sqrt{n_i}) \sqrt{(r_i / (2l_{n_i k_i}^{*(i)}))(1 + \rho_i / (2n_i r_i)))}.$$
(1.10)

Увеличение критической длины трещины на два порядка соответствует уменьшению параметра критической нагрузки на один порядок с учетом дефектности материала и затупления трещины.

Возможны дефекты двух типов: макродефекты и микродефекты на каждом структурном уровне. Первые описываются размером трещины (например, для внутренней трещины имеем набор параметров r_i , $2l_{n_ik_i}^{*(i)}$), вторые со-ответствуют поврежденности материала в окрестности вершины трещины и описываются параметрами n_i и k_i . На рис. 3 приведены пять кривых разрушения: кривые 1, 2 соответственно описывают разрушение бездефектных матери-

алов ($n_i = k_i = 1$) и материалов с дефектами $(n_i = 2, k_i = 1)$, содержащих острую трещину; кривая 3 описывает разрушение бездефектных материалов $(n_i = k_i = 1)$, имеющих узкий вырез $(\rho_i/(2r_i) = 3)$, кроме того, $2l_{n_ik_i}^{*(i)}/r_i \ge 10\rho_i/(2r_i))$; кривая 4 — классическая кривая разрушения, которая в нуле имеет особенность (см. второе соотношение в (1.9), когда в скобках опущена единица); кривая 5, изображенная точками, — условная кривая, описывающая переход от материала с дефектами к бездефектному при подрастании трещины. Очевидно, что по предлагаемым критериям материалы с микродефектами или без них не могут выдержать напряжений, превосходящих теоретические прочности соответствующих структур.

Таким образом, дана качественная оценка влияния на параметры критических нагрузок $\sigma_{\infty}^{*(i)}$ (см. соотношения (1.5), (1.8), (1.9)) гладких составляющих решений $\sigma_{\infty}^{(i)}$ в (1.2), микродефектности материалов перед вершиной трещины k_i/n_i , затупления трещин ρ_i/r_i . Подчеркнем, что по терминологии В. В. Новожилова кривая 1 на рис. 3 соответствует необходимому критерию хрупкой прочности. Отметим, что в соотношениях (1.4)-(1.6), (1.8) и (1.9) для критических параметров возможен предельный переход при $K_I^{*(i)} \to 0,$ $l_{n_ik_i}^{*(i)} \to 0$ (в классических соотношениях, как и в (1.10), подобный предельный переход отсутствует).

2. О КРИТИЧЕСКИХ ПАРАМЕТРАХ ТРЕЩИН, ПОЛУЧЕННЫХ ПО МНОГОМАСШТАБНЫМ КРИТЕРИЯМ

Пусть для характерных линейных размеров и теоретических прочностей рассматриваемого тела с иерархией структур имеют место равенства

$$r_i/r_{i+1} = A_i, \qquad \sigma_m^{(i+1)}/\sigma_m^{(i)} = B_i, \qquad i = 1, 2, \dots, i^0 - 1,$$
(2.1)

где $A_i = \text{const} \gg 1, B_i = \text{const} \gg 1$ — постоянные, отличающиеся, вообще говоря, на порядки (см. (1.10)). Как правило, имеем

min
$$r_i = r_{i0}$$
, min $\sigma_m^{(i)} = \sigma_m^{(1)}$, $i = 1, 2, \dots, i^0$.

Рассмотрим внутреннюю острую трещину длиной $2l_{n_ik_i}^{(i)}$, причем для каждой структуры известны параметры дефектности материала k_i/n_i . Из приближенных равенств (1.10) при заданных A_i , B_i легко определяется минимальная критическая нагрузка min $\sigma_{\infty}^{*(i)}$, реализуемая для некоторой структуры $i = i^*$. Если необходимо, возможно уточнение этой нагрузки (см. (1.9)). В зависимости от геометрических, силовых параметров и параметров, характеризующих дефектность материалов, наименьшая критическая нагрузка min $\sigma_{\infty}^{*(i)}$ имеет место для той или иной структуры. При прочих равных условиях трещиностой-кость структурированного материала увеличивается с увеличением линейного размера r_i конкретной структуры, так как уменьшается относительный размер трещины $2l_{n_ik_i}^{(i)}/r_i$ при фиксированной ее длине. Тот же результат получен в работе [18] методами теории подобия (там же дан анализ опубликованных экспериментальных данных). Существенные трудности возникают при изготовлении бездефектных материалов $k_i/n_i =$ 1 или материалов с заданным относительным уровнем дефектов $k_i/n_i =$ сопst < 1, когда увеличивается размер r_i .

Пусть при последовательном догружении параметр нагрузки для какой-либо конкретной структуры $i = i^*$ достигает критической величины, тогда начинается неустойчивый рост трещины для этой структуры; причем имеют место неконтролируемое макроразрушение, если $i^* = 1$, и квазистатическое подрастание трещины, если $i^* > 1$. При неконтролируемом разрушении тело разделяется на части. При подрастании трещины в структуре $i^* > 1$ возможны либо остановка разрушения структуры $i^* > 1$, либо интенсификация разрушения структур $i < i^*$. Разрушение прекращается, например, когда вершина трещины упирается в зерно идеального монокристалла (переход от материала с микродефектами к бездефектному материалу (кривая 5 на рис. 3)). Интенсификация разрушения имеет место, когда при квазистатическом подрастании трещины структуры i^* выполняется критерий (1.1) для структуры с номером i таким, что $1 \leq i < i^*$. Отметим, что при $i^* = 1$ происходит переход к неконтролируемому макроразрушению. Наиболее неблагоприятный случай (катастрофического разрушения) имеет место, когда превышены критические нагрузки сразу для двух или более структур, среди которых имеется макроструктура $i^* = 1$.

С учетом сказанного выше рассмотрим поведение достаточно длинных трещин. Необходимую информацию о критических параметрах внутренних трещин (см. п. 1) дополним приближенным равенством для краевых острых трещин (ср. (1.10))

$$\sigma_{\infty}^{*(i)} / \sigma_m^{(i)} \simeq (k_i / \sqrt{n_i}) \sqrt{r_i / (2.52 l_{n_i k_i}^{*(i)})}.$$
(2.2)

Примем, что в вершине трещины в каждой структуре действует только одна связь и относительные линейные размеры и дефекты материала для каждой структуры имеют вид

$$r_1/r_2 = A_1 = O(10^4), \quad r_2/r_3 = A_2 = O(10^2), \quad n_1 = n_2 = n_3 = 2, \quad k_1 = k_2 = k_3 = 1, \quad (2.3)$$

где $2r_i$ — интервалы осреднения (i = 1, 2, 3); r_3 — постоянная кристаллической решетки. Примем также, что теоретические прочности каждой структуры отличаются на порядки $(\sigma_m^{(3)}$ — идеальная прочность монокристаллического тела):

$$\sigma_m^{(2)} / \sigma_m^{(1)} = B_1 = O(10^2), \qquad \sigma_m^{(3)} / \sigma_m^{(2)} = B_2 = O(10),$$
(2.4)

что соответствует случаю, когда прочность конструкционного материала в макроконструкции на три порядка отличается от идеальной прочности кристаллического тела. Учитывая соотношения (1.10), (2.2) и равенства (2.3), (2.4), устанавливаем, что для достаточно длинных трещин в зависимости от геометрических, силовых параметров и параметров, характеризующих дефектность материалов, наименьшая критическая нагрузка достигается в одной из структур i = 1, 2, 3.

Остановимся более подробно на выборе величины $\sigma_m^{(1)}$, характеризующей теоретическую прочность связи в пористом теле. Когда возникает необходимость провести конкретные расчеты и сопоставить результаты эксперимента с теоретическими построениями [9, 10], в качестве теоретической прочности указанной связи следует выбирать верхнюю грань величины прочности образца-свидетеля [9, 10], полученную в натурном эксперименте. Подчеркнем, что эксперименты на гладких образцах имели существенно больший разброс, чем на образцах-свидетелях. По сути, на образцах-свидетелях были смоделированы микроповреждения поверхности пор, в результате чего макроконструкции разрушались раньше, чем конструкции с порами, имеющими идеальную поверхность.

ЗАМЕЧАНИЕ. В критерии (1.1) для материала, имеющего повреждения, предполагается, что разрушение начинается в вершине трещины, а не в вершинах микроповреждений. Более подробная оценка картины разрушения, возникающей при взаимодействии острых трещин и различных отверстий (тупых трещин), приведена в [19, 20].

3. ЗАРОЖДЕНИЕ МИКРОПОР ПЕРЕД ВЕРШИНОЙ ТРЕЩИНЫ ДЛЯ МАЛОУГЛОВЫХ ГРАНИЦ

Предложенные многомасштабные критерии хрупкой прочности, свободные от ограничений классического подхода, позволяют описать зарождение сателлитных микротрещин: «...рост трещины в... материалах может происходить одновременно путем разрыва сплошного материала и образования пор перед движущейся вершиной трещины» [21, с. 436]; «Все больше данных свидетельствует о том, что в многофазных поликристаллических материалах концентрация напряжений, обусловленная частицами второй фазы или границами зерен, вызывает образование микропор, которые в конечном счете объединяются в макропоры» [21, с. 438].

Для описания зарождения микропор перед трещиной в материале с дефектами модифицируем критерий (1.1). Далее рассматривается образование микропор отрыва в сплошном твердом теле на продолжении макротрещины отрыва (см. [21, рис. 13, 15]). Пусть правая вершина внутренней макротрещины длиной 2l упирается в монокристалл без дефектов (его протяженность вдоль оси x составляет $n_i^0 r_{i0}$, где r_{i0} — постоянная решетки, индекс $i^0 = 2$ присваивается кристаллической структуре; например, для железа имеем $r_2 = r_e = 2,9$ Å для α - и β -железа, $r_2 = r_e = 3,6$ Å для γ -железа), а на правом продолжении трещины расположена малоугловая граница двух других монокристаллов (индекс i = 1 присваивается структуре с малоугловой границей, малый угол характеризует разориентацию этих монокристаллов (см. рис. $2, \delta, 6$)). Допустим, что при заданном уровне нагружения $\sigma_{\infty}^{(1)}$ длина трещины 2l не является критической ни для i = 1, ни для $i^0 = 2$ (см. критерии (1.1)). Смоделируем регулярную малоугловую границу двух монокристаллов кластерами из вакансий. Допустим, что два монокристалла контактируют между собой по некоторой прямой, на которой вакансии расположены регулярно, причем число вакансий равно $n_1 - k_1$, где $k_1 = O(1)$ — число работающих межатомных связей между верхним и нижним монокристаллами, образующими малоугловую границу (например, $k_1 = 1, 2, 3$); n_1r_1 — интервал, через который регулярная структура повторяется, $n_1 \gg 1$ (например, $n_1 = 10, 20$). Для определенности считается, что структура i = 1 начинается с кластера из вакансий $n_1 - k_1$, далее расположены k_1 атомов, обеспечивающих межатомное взаимодействие кристаллических структур двух монокристаллов.

Острая трещина моделируется двусторонним разрезом, условие образования первой микропоры на продолжении трещины справа для некоторой конкретной структуры $i = i^*$ (в случае малоугловых границ $i^* = i^0 - 1 = 1$) имеет вид

$$\max \frac{1}{kr} \int_{n^{(1)}r}^{n^{(2)}r} \sigma_y(x,0) \, dx = \sigma_m^{(1)}. \tag{3.1}$$

Здесь $\sigma_y = \sigma_y^{(i^*)}(x_{i^*}, 0)$ — нормальные напряжения на продолжении трещины (они могут иметь сингулярность только в вершине трещины для структуры i^0 и не имеют ее для структуры $i^0 - 1$); $O_{i^*}x_{i^*}y_{i^*}$ — прямоугольная система координат, ориентированная относительно правой части трещины; $r = r_{i^*}$ — характерный линейный размер структуры i^* ; в (3.1) и далее символ i^* опущен; $n^{(2)}r$ и $n^{(1)}r$ — верхний и нижний пределы интегрирования, $n^{(1)} > 0$; k — число активных связей, действующих на интервале осреднения $(n^{(1)}r, n^{(2)}r)$, причем $n^{(2)} - n^{(1)} \gg k$; $\sigma_m^{(1)}$ — теоретическая прочность материала.

Напряженное состояние в континуальной модели в окрестности вершины трещины имеет интегрируемую особенность (см. представление (1.2)), причем КИН внутренней трещины связан с ее полудлиной и заданным нагружением на бесконечности σ_{∞} следующим образом: $K_I = \sigma_{\infty} \sqrt{\pi l}$. После подстановки указанных соотношений в подынтегральное выражение из (3.1) и необходимых преобразований получим соотношение, описывающее зарождение первой микропоры и связывающее критические параметры нагружения σ_{∞}^* и длину макротрещины $2l^*$ (ср. с (1.9)):

$$\frac{\sigma_{\infty}^*}{\sigma_m^{(1)}} = \left[\max\left(\frac{n^{(2)} - n^{(1)}}{k} + \frac{\sqrt{n^{(2)}} - \sqrt{n^{(1)}}}{k} \sqrt{\frac{2l^*}{r}} \right) \right]^{-1}.$$

Полученный критический параметр σ_{∞}^* удовлетворяет ограничениям (сначала выполняется критерий (3.1), а не критерии (1.1))

$$\sigma_{\infty}^{*}/\sigma_{m}^{(1)} < \sigma_{\infty}^{*(1)}/\sigma_{m}^{(1)}, \qquad \sigma_{\infty}^{*}/\sigma_{m}^{(1)} < \sigma_{\infty}^{*(2)}/\sigma_{m}^{(2)},$$

где $\sigma_{\infty}^{*(2)}$ и $\sigma_{\infty}^{*(1)}$ — критические параметры нагружения соответственно монокристалла и поликристалла с малоугловой границей, когда критическая длина внутренней трещины составляет $2l^* = 2l^{*(1)} = 2l^{*(2)}$ (см. (1.9)). В последних неравенствах вновь сопоставляются критические параметры. В случае, когда критический параметр $\sigma_{\infty}^*/\sigma_m^{(1)}$ совпадает по крайней мере с одним из критических параметров $\sigma_{\infty}^{*(1)}/\sigma_m^{(1)}$, $\sigma_{\infty}^{*(2)}/\sigma_m^{(2)}$, наступает катастрофическое разрушение.

Левая часть соотношения (3.1) в случае малоугловых границ достигает максимальной величины при

$$n^{(1)} = n_2, \qquad n^{(2)} = n_2 + 2n_1 - k_1, \qquad k = k_1,$$

и, следовательно, длина вновь образованной поры составит $L = (2n_1 - k_1)r_1$. Легко проверить, что все ограничения выполнены, например, при $k_1 = 1$, $n_1 = 21$, n = 4, т. е. для достаточно слабых малоугловых границ.

Дискретно-интегральные критерии (1.1) и (3.1) относятся к гибридным, так как в них используются как дискретные, так и континуальные подходы: напряженно-деформированное состояние в окрестностях вершины трещины находится по континуальной модели механики сплошной среды, а потеря устойчивости атомной решетки с дефектами при заданном нагружении определяется при дискретном подходе, следуя моделям физики твердого тела.

В бездефектном материале сначала выполняются критерии (1.1), а затем критерий (3.1). При наличии существенных дефектов на продолжении трещины сначала может выполняться критерий (3.1), затем с учетом образовавшейся микропоры происходит перестройка напряженно-деформированного состояния. Итак, только после учета влияния структуры в окрестности вершины трещины на процесс разрушения удалось «объяснить, почему при определенных условиях процесс разрушения начинается не в вершине трещины, а на некотором удалении от нее (проблема принципиально не может быть решена на основе континуальной модели теории упругости, поскольку в силу особенности, которая дает континуальная модель в конце трещины, разрушение при всех критериях должно начинаться именно в вершине)» [22, с. 56].

После образования первой микропоры возможно: 1) появление второй микропоры; 2) продвижение основной трещины (неконтролируемое разрушение); 3) расширение первой микропоры-трещины (см. [23, рис. 77]). В первом случае используется аналог критерия (3.1), а во втором и третьем — аналоги критериев (1.1). Для описания квазихрупкого процесса зарождения микропор, их роста и продвижения основной трещины критерии (3.1) и (1.1) несколько усложняются, так как в подынтегральных выражениях необходимо использовать нормальные напряжения на продолжении трещины с учетом влияния уже образовавшихся микропор-трещин [19, 20]. Процесс развития микропор в общем виде не описывается квазихрупкими (необходимыми) критериями типа (1.1), (3.1), так как «пластическая деформация, происходящая в процессе слияния пустот, столь мала, что не поддается макроскопическому выявлению, но локально она достигает уровня, сравнимого с сотнями и тысячами процентов удлинения при испытаниях на растяжение» [23, с. 357]. Полное описание развития микропор будет возможно после построения многомасштабных достаточных критериев прочности.

ЛИТЕРАТУРА

- 1. Нейбер Г. Концентрация напряжений. М.; Л.: Гостехтеоретиздат, 1947.
- 2. Новожилов В. В. О необходимом и достаточном критерии хрупкой прочности // Прикл. математика и механика. 1969. Т. 33, вып. 2. С. 212–222.
- 3. Андреев А. В., Корнев В. М., Тихомиров Ю. В. Обрыв атомных связей в вершине трещины. Потеря устойчивости участка цепочки атомов // Изв. РАН. Механика твердого тела. 1993. № 5. С. 135–146.
- Корнев В. М., Тихомиров Ю. В. О критерии хрупкого разрушения тел с трещиной при наличии дефекта атомной решетки // Изв. РАН. Механика твердого тела. 1994. № 2. С. 185–193.
- Корнев В. М. Интегральные критерии хрупкой прочности трещиноватых тел с дефектами при наличии вакансий в носике трещины. Прочность компактированных тел типа керамик // ПМТФ. 1996. Т. 37, № 5. С. 168–177.

- Mikhailov S. E. A functional approch to non-local strength conditions and fracture criteria.
 Body and point fracture // Engng Fract. Mech. 1995. V. 52, N 4. P. 731–743.
- Mikhailov S. E. A functional approch to non-local strength conditions and fracture criteria.
 Discrete fracture // Ibid. P. 745–754.
- 8. Адищев В. В., Корнев В. М. Подход к построению критерия хрупкой прочности трещиноватых тел // Изв. вузов. Стр-во. 1997. № 7. С. 41–45.
- Корнев В. М., Адищев В. В., Демешкин А. Г. Экспериментальная апробация критерия страгивания трещин в регулярно-неоднородной среде // Изв. вузов. Стр-во. 1998. № 6. С. 130–133.
- 10. Адищев В. В., Демешкин А. Г., Корнев В. М. Критерии хрупкого разрушения пористых сред регулярной структуры с мезоповреждениями. Сопоставление с экспериментальными данными. Новосибирск, 1998. (Препр. / РАН. Сиб. отд-ние. Ин-т гидродинамики; № 3–98).
- 11. Корнев В. М., Разворотнева Л. И. Сравнительные оценки прочности сухого и влажного кварца при измельчении // ПМТФ. 1998. Т. 39, № 1. С. 138–144.
- Корнев В. М. Снижение прочности металлов при хемосорбции водорода в вершине трещины // ПМТФ. 1998. Т. 39, № 3. С. 173–178.
- Kornev V. M., Razvorotneva L. I. Brittle fracture of cracked solids as affected by surfactants // Damage and fracture mechanics. Computer aided assessment and control. Southampton; Boston: Comput. Mech. Publ., 1998. P. 565–574.
- Макмилан Н. Идеальная прочность твердых тел // Атомистика разрушения: Сб. ст. 1983– 1985 гг. / Сост. А. Ю. Ишлинский. М.: Мир, 1987. С. 35–103.
- Mikhailov S. E., Bavaglia S. Application of non-local failure criterion to a crack in heterogeneous media // Damage and fracture mechanics. Computer aided assessment and control. Southampton; Boston: Comput. Mech. Publ., 1998. P. 155–164.
- Mikhailov S. E. A functional approach to non-local strength condions at multiaxial loading // Ibid. P. 429–438.
- 17. Саврук М. П. Коэффициенты интенсивности напряжений в телах с трещинами. Механика разрушения и прочность материалов. Киев: Наук. думка, 1988. Т. 2.
- 18. Ентов В. М. О роли структуры материала в механике разрушения // Изв. АН СССР. Механика твердого тела. 1976. № 3. С. 110–118.
- Бережницкий Л. Т., Панасюк В. В., Ароне Р. Г. К вопросу о взаимодействии трещин, расположенных вдоль одной прямой // Физ.-хим. механика материалов. 1971. Т. 7, № 2. С. 64–67.
- Tsukrov I., Kachanov M. Brittle-elastic solids with interacting noncircular pores: stress concentrations and microfracturing patterns // Damage and fracture mechanics. Computer aided assessment and control. Southampton; Boston: Comput. Mech. Publ., 1998. P. 515–523.
- Заккей В. Ф., Герберич У. У., Паркер Э. Р. Структурные типы разрушения // Разрушение: В 7 т. Т. 1. Микроскопические и макроскопические основы механики разрушения. М.: Мир, 1973. С. 421–470.
- Морозов Н. Ф. Проблемы хрупкого разрушения и их исследование методами теории упругости. Механика и научно-технический прогресс. Т. 3. Механика деформируемого твердого тела. М.: Наука, 1988. С. 54–63.
- Бичем К. Д. Микропроцессы разрушения // Разрушение: В 7 т. Т. 1. Микроскопические и макроскопические основы механики разрушения. М.: Мир, 1973. С. 265–375.