2009. Том 50, № 6

Ноябрь – декабрь

C. 1256 – 1259

КРАТКИЕ СООБЩЕНИЯ

УДК 541.272:548.737

НЕОБЫЧНАЯ МОЛЕКУЛЯРНАЯ СТРУКТУРА (С=О→Si←O'=C') БИС(2-МЕТИЛ-4-ПИРОНО-3-ОКСИ)ДИФТОР(λ⁶)СИЛИКОНИЯ

© 2009 М.Г. Воронков¹, А.А. Корлюков², Э.А. Зельбст³*, Е.А. Гребнева¹, О.М. Трофимова¹, М.Ю. Антипин²

¹Иркутский институт химии им. А.Е. Фаворского СО РАН

² Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва ³ Иркутский государственный педагогический университет

Статья поступила 21 октября 2008 г.

Методом рентгеновской дифракции установлена кристаллическая и молекулярная структура спироциклического (C=O \rightarrow Si \leftarrow O'=C') бис(2-метил-4-пироно-3-окси)дифтор(λ^6)силикония, содержащего гипервалентный атом кремния и ранее неизвестный координационный узел F₂SiO₄. Координационный полиэдр атома кремния — несколько искаженный октаэдр.

Ключевые слова: бис(2-метил-4-пироно-3-окси)дифтор(λ^6)силиконий, молекулярная структура, рентгеноструктурный анализ.

Развивая наши исследования в области органических соединений гипервалентного кремния, содержащих группировку F₃Si←O, входящую в пятичленный координационный гетероцикл, названных нами драконоидами [1], мы решили получить аналогичное кремнийорганическое производное 3-гидрокси-2-метил-4-пирона (мальтол). При этом предполагалось, что будет сформирована молекула **A**, отвечающая структуре:

Экспериментальная часть. Для этого была изучена реакция протолитического расщепления связи С—Si в фенилтрифторсилане мальтолом, аналогичная ранее проведенным нами реакциям PhSiF₃ с моно-, бис- и трис(2-гидроксиэтил)аминами [2—4]. Однако, вместо ожидаемого соединения **A** было получено спироциклическое производное (C=O→Si←O'=C') бис(2-метил-4-пироно-3-окси)дифтор(λ^6)силиконий (II), содержащее гексакоординированный атом кремния:

^{*} E-mail: zelbst@rambler.ru

Рис. 1. Молекула (C=O \rightarrow Si \leftarrow O'=C') бис(2метил-4-пироно-3-окси)ди ϕ тор(λ^6)силикония

Соединение **II** — бесцветные кристаллы с T_{nn} = 290 °С. Найдено, %: С 45,41, Н 3,78, F 12,34, Si 8,83. С₁₂Н₁₀О₆SiF₂. Вычислено, %: С 45,56, Н 3,16, F 12,02, Si 8,88. Его строение, ранее установленное методами ЯМР, ИК спектроскопии и квантовой химии [5], убедительно подтверждено данными рентгеновской дифракции (рис. 1).

Рентгеноструктурное исследование монокристаллов II проведено на четырехкружном автоматическом дифрактометре "Syntex P2₁" при T = 100,0 К. Элементарная ячейка моноклинного кристалла II: a = 10,1149(8), b = 9,6583(8), c = 12,3634(10) Å; $\beta = 96,62(1)^{\circ}$, V = 1199,76(1) Å³, пр. гр. C2/c содержит четыре спироциклических молекулы. Получены интенсивности 4693 отражений от прозрачного монокристалла $(0,1\times0,1\times0,1$ мм; Мо K_{α} -излучение, графитовый монохроматор $d_{\text{выч}} = 1,751$ г/см³, сканирование до $2\theta_{\text{max}} = 61,0^{\circ}$). Учет поглощения ($\mu = 0,251$ мм⁻¹) проведен по эквивалентным отражениям с помощью программного комплекса APEX2, мин. и макс. трансмиссия 0,975/0,975. Молекулярная структура II решена прямым методом ($F \ge 4\sigma(F)$) и уточнена полноматричным МНК в анизотропном приближении для неводородных атомов по 1804 независимым отражениям до фактора достоверности R = 0,037, $R_w = 0,094$. Все расчеты выполнены по программному комплексу SHELXTL-97 V.5.10. СIF файл, содержащий полную информацию по исследованной структуре, депонирован в ССDС под номером 680515. Длины связей и валентные углы молекулы II приведены в таблице, нумерация атомов указана на рис. 1.

Обсуждение результатов. Координационный полиэдр атома кремния молекулы II — несколько искаженный октаэдр. Поскольку атом кремния находится в частной позиции элементарной ячейки C2/c, положения атомов F₁, O₁ и O₂ симметричны одноименным атомам F'₁, O'₁ и O'₂. В избранных нами аксиальных позициях координационного октаэдра расположены атомы F₁ и O₁, аксиальный валентный угол F₁SiO₁ наиболее близок к линейному (176°). В экваториальной плоскости октаэдра находятся атом фтора F'₁ и три атома кислорода (O'₁, O₂, O'₂), причем длины всех ребер октаэдра, образующих эту плоскость, близки — 2,50 Å (2,54—2,43 Å), а углы между ними прямые (88,9—91,3°). Атом кремния выходит из этой плоскости в сторону

		, ,	· · ·			· •	-		
Связь	d	Связь	d	Угол	ω	Угол	ω	Угол	ω
$Si - F_1$ $Si - F'_1$	1,6505(9) 1,6505(9)	$O_3 - C_4 O_3 - C_3$	1,3428(17) 1,3605(17)	F_1SiO_1 F_1SiF_1'	176,51(4) 93,51(7)	C ₁ O ₁ Si C ₂ O ₂ Si	110,74(9) 112,15(8)	$\begin{array}{c} O_2C_2C_1\\ C_3C_2C_1\end{array}$	114,13(11) 120,45(13)
$Si - O_1$	1,8682(11)	$C_1 - C_5$	1,4122(19)	F_1SiO_2	94,33(5)	$C_4O_3C_3$	121,38(9)	$O_3C_3C_2$	118,86(12)
$Si-O'_1$	1,8682(11)	$C_1 - C_2$	1,4236(18)	$F_1SiO'_2$	90,42(4)	$O_1C_1C_5$	127,01(13)	$O_3C_3C_6$	114,66(11)
Si—O ₂	1,7695(9)	$C_2 - C_3$	1,3652(17)	$F_1SiO'_1$	88,64(4)	$O_1C_1C_2$	114,22(12)	$C_2C_3C_6$	126,47(13)
$Si-O_2'$	1,7695(9)	$C_3 - C_6$	1,4803(19)	$O_2' SiO_1'$	86,67(4)	$C_5C_1C_2$	118,76(12)	$O_3C_4C_5$	123,23(13)
$O_1 - C_1$	1,2869(16)	$C_4 - C_5$	1,359(2)	$O_1 SiO_1^\prime$	89,35(4)	$O_2C_2C_3$	125,40(12)		
$O_2 - C_2$	1,3342(16)								

Длины связей d, Å и валентные углы ω , град. в молекуле **II**

атома F₁ лишь на 0,054 Å. Для описания координационного полиэдра атома кремния можно предложить три варианта. Два из них фактически идентичны: в первом октаэдре в аксиальном

Рис. 2. Стекинг-взаимодействие между пироновыми гетероциклами: *а* — вид сбоку, *б* — сверху. Молекула II получена из базовой симметричным преобразованием −*x*, −*y*, −*z*+1

(*транс*) положении находятся атомы F_1 и O_1 , во втором — F'_1 и O'_1 . Третий вариант (в аксиальных позициях октаэдра находятся атомы O_2 и O'_2), судя по аксиальному углу $O_2SiO'_2$ и углам между ребрами октаэдра, образующими экваториальную плоскость $F_1O_1F'_1O'_1$, менее удовлетворяет условиям правильности октаэдра.

Межатомное расстояние Si— F_1 (1,651 Å) в молекуле II несколько меньше, чем в молекуле бис(O—Si)-хелатный бис{[N-(1-фенилэтил)ацетамидо]метил}дифторсилана (1,670 Å) [6], атом кремния в котором также гексакоординирован, и больше, чем в соединениях, содержащих тетраэдрический атом кремния (1,58 Å) [7] и пентакоординированный атом кремния — в молекулах драконоидов (1,60 Å) [1].

Длина аксиальных связей О—Si в молекуле II на 0,10 Å больше экваториальной связи О—Si и несколько меньше, чем в молекуле бис {[N-(1-фенилэтил)ацетамидо]метил} дифторсилана (1,932 Å) [6], в котором содержатся два пятичленных координационных цикла, а атом кремния, связанный с двумя атомами фтора, также гексакоординирован. Примечательно, что в обоих этих соединениях, включающих фрагмент C=O—SiF₂, длина внутримолекулярной донорно-акцепторной связи О—Si меньше, чем в молекулах драконоидов, содержащих одну внутримолекулярную группировку C=O—SiF₂Me (1,985 Å) [8].

Оба пятичленных координационных гетероцикла в молекуле II не плоские, а имеют форму полураскрытого конверта с углом перегиба по линии O_1O_2 13,0(1)°. Аннелированное по связи С—С шестичленное плоское кольцо (2-метил-4-пироно-3-окси) копланарно с одним из плоских фрагментов $O_2C_2C_1O_1$ пятичленного гетероцикла. В изоструктурном комплексе дихлоро-бис(3-гидрокси-2-метил-4-пироно)станнана, содержащем вместо группы SiF₂ центральный фрагмент SnCl₂, аналогичный перегиб пятичленного координационного гетероцикла отсутствует [9], а длина межплоскостной связи С—С одинакова. Геометрия пиронового гетероцикла в молекуле II и его изоструктурном аналоге идентична.

Двугранный угол между плоскостями $O_1C_1C_2O_2C_3O_3C_4C_5C_6$ и $O'_1C'_1C'_2O'_2C'_3O'_3C'_4C'_5C'_6$ в молекуле **II** далек от прямого (71,8°); по квантово-химическим расчетам он близок к 90°. Однако угол между двумя основными копланарно аннелированными циклами в дихлоро-бис(3гидрокси-2-метил-4-пироно)станнане [9] равен 85°, что можно объяснить большим атомным радиусом олова.

Молекулу II можно сравнить с "несимметричной бабочкой" (см. рис. 1). Плоскую часть крыла образуют шестичленный цикл вместе с метильной группой и копланарно аннелированная с ним плоская часть пятичленного гетероцикла (атомы $C_1O_1C_2O_2$). Эти "крылья" объединяются центральным атомом кремния, находящимся в углу конвертов, образованных плоскостями O_1SiO_2 и $O'_1SiO'_2$. Угол перегиба каждого конверта составляет 13°, а плоская часть одного крыла находится по отношению к плоской части другого под углом 71,8°.

В кристаллической упаковке наблюдается стекинг-взаимодействие между плоскими пироновыми гетероциклами, характеризующееся высокой степенью перекрывания их π-систем (рис. 2). Расстояние между плоскостями циклов и их центрами масс составляет 3,38 и 3,52 Å соответственно. Дополнительное связывание молекул в кристалле осуществляется за счет слабых взаимодействий метильных групп С—Н…О и С—Н…F и пироновых циклов с атомами F и О координационного узла атома Si. Возможно наличие в кристалле трехмерного каркаса, связанного описанными выше взаимодействиями, обуславливает достаточно высокую величину рассчитанной плотности кристалла II (1,751 г.с.м⁻³).

Работа выполнена при поддержке Совета по грантам Президента РФ (НШ-255.2008.3).

СПИСОК ЛИТЕРАТУРЫ

- 1. Воронков М.Г. // Изв. АН СССР. Сер. хим. 1991. № 12. С. 2664 2680.
- 2. Воронков М.Г., Гребнева Е.А., Трофимова О.М. и др. // Докл. АН. 2006. **409**, № 6. С. 779 781. [Dokl. Chem. – 2006. – **409**, Pt.2. – P. 139 – 141.]
- 3. Воронков М.Г., Гребнева Е.А., Трофимова О.М. и др. // Журн. общ. химии. 2006. 76, вып. 12. С. 1938 1941. [Rus. J. Gen. Chem. 2006. 76, N 12. Р. 1851 1853.]
- 4. Воронков М.Г., Албанов А.И., Гребнева Е.А. и др. // Там же. 2006. 76, вып. 12. С. 1942 1947. [Rus. J. Gen. Chem. – 2006. – 76, N 12. – Р. 1854 – 1859.]
- 5. *Аксаментова Т.Н., Чипанина Н.Н., Воронков М.Г. и др. //* Там же. 2009. **79**, вып. 1. С. 100 105. [Rus. J. Gen. Chem. 2009. **79**, N 1. P. 98 103.]
- 6. Крамарова Е.П., Погожих С.А., Шипов А.Г. и др. // Изв. АН. Сер. хим. 2004. № 1. С. 251 253.
- Sheldrich W.S. In.: The Chemistry of Organic Silicon Compounds / Ed. S. Patai and Z. Rappoport. N. Y.: Willey, 1989. Ch. 3. – P. 269.
- 8. Зельбст Э.А., Овчинников Ю.Э., Кашаев А.А. и др. // Докл. АН СССР. 1992. **327**, № 3. С. 336 340.
- 9. Bhattacharya S., Seth N., Gupta V.D. et al. // Chem. Ber. 1994. 127, N 10. P. 1895 1900.