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1. Введение

В последние годы растущий интерес к проблемам усвоения данных наблюдений в
математических моделях геофизической гидродинамики обусловлен значительным про-
грессом в создании все более мощных вычислительных комплексов, развитием новых
спутниковых и контактных измерительных технологий, а также новых методов и чис-
ленных алгоритмов. Возможность анализа и обработки больших потоков информации
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и использования ее в моделях привела к постановке новых математических задач гео-
физической гидродинамики. Необходимость синтеза данных измерений и данных мо-
делирования породила сложнейшие научные и технологические проблемы, связанные
с усовершенствованием вычислительных методов моделирования и анализа природных
явлений. Методы усвоения данных позволяют связать модельные расчеты с реальными
данными для построения или уточнения неизвестных входных данных или параметров
и повышения точности прогноза [1–9].

Наряду с исследованием разрешимости, разработкой и обоснованием алгоритмов чис-
ленного решения задач вариационного усвоения данных наблюдений, важную роль иг-
рают свойства получаемых оценок (оптимальных решений). Чрезвычайно важным явля-
ется вопрос устойчивости оценок и их функционалов (функций отклика) к неопределен-
ностям входных данных (наблюдений, априорной информации, погрешностей моделей)
[10–16]. В работе [16] проведено исследование чувствительности функционалов от оп-
тимального решения задачи вариационного усвоения данных с целью восстановления
потоков тепла на поверхности моря при использовании ковариационных матриц ошибок
данных наблюдений. Настоящая работа обобщает результаты работы [16] на случай ис-
следования чувствительности функционалов от оптимального решения одновременно к
данным наблюдений и к входным данным о потоке тепла в задаче вариационного усвое-
ния для модели термодинамики моря с использованием ковариационных матриц ошибок
начального приближения. Входными данными о потоке тепла в данном случае является
начальное приближение для неизвестного потока тепла (так называемый “фоновый” по-
ток, или бэкграунд). С использованием свойств гессиана функции стоимости доказана
теорема о представлении градиента функционала по отношению к данным наблюдений
и данным начального приближения, сформулирован алгоритм вычисления градиента
функционала и приведены результаты численных экспериментов для модели динамики
Балтийского моря, разработанной в ИВМ РАН.

2. Задача вариационного усвоения данных
для модели термодинамики моря

Рассмотрим задачу термодинамики моря в виде [17,18]

Tt + (Ū , grad)T −Div(âT gradT ) = fT в D × (0, t̄),

T = T0 при t = 0 в D,

−νT
∂T

∂z
= Q на ΓS × (0, t̄),

∂T

∂NT
= 0 на Γw,c × (0, t̄),

Ū
(−)
n T +

∂T

∂NT
= Ū

(−)
n dT +QT на Γw,op × (0, t̄),

∂T

∂NT
= 0 на ΓH × (0, t̄),

(2.1)

где T = T (x, y, z, t) — неизвестная функция температуры, t ∈ (0, t̄), (x, y, z) ∈ D =
Ω × (0, H), Ω ⊂ R2, H = H(x, y) — функция рельефа дна, Q = Q(x, y, t) — суммар-
ный приток тепла, Ū = (u, v, w), âT = diag((aT )ii), (aT )11 = (aT )22 = µT , (aT )33 = νT ,
fT = fT (x, y, z, t) — заданные функции. Скорости u, v, w зависят в общем случае от
пространства и времени, а коэффициенты µT , νT предполагаются зависящими только
от пространственных переменных на рассматриваемом интервале по времени. Граница
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области Γ ≡ ∂D представляется как объединение четырех непересекающихся частей ΓS ,
Γw,op, Γw,c, ΓH , где ΓS = Ω (невозмущенная поверхность моря), Γw,op — жидкая (откры-
тая) часть вертикальной боковой границы, Γw,c — твердая часть вертикальной боковой
границы, ΓH — дно моря. Другие обозначения и детальное описание постановки задачи
можно найти в работах [19,20].

Задачу (2.1) можно записать в форме операторного уравнения в
(
W 1

2 (D)
)∗

Tt + LT = F +BQ для п. в. t ∈ (0, t̄),

T = T0 при t = 0,
(2.2)

где равенство понимается в обобщенном смысле:

(Tt, T̂ ) + (LT, T̂ ) = F (T̂ ) + (BQ, T̂ ) ∀ T̂ ∈W 1
2 (D), (2.3)

а L, F, B определяются интегральными соотношениями:

(Tt, T̂ ) =

∫
D

TtT̂ dD,

(LT, T̂ ) ≡
∫
D

(
− TDiv(Ū T̂ )

)
dD +

∫
Γw,op

Ū
(+)
n T T̂ dΓ +

∫
D

âT gradT grad T̂ dD,

F (T̂ ) =

∫
Γw,op

(
QT + Ū

(−)
n dT

)
T̂ dΓ +

∫
D

fT T̂ dD,

(BQ, T̂ ) =

∫
Ω

QT̂ |z=0 dΩ,

при этом функции âT , QT , fT , Q предполагаются достаточно гладкими, чтобы равен-
ство (2.3) имело смысл.

Рассмотрим задачу об усвоении данных о температуре поверхности моря, следуя
[16, 20]. Предположим, что в задаче (2.1) функция потока тепла Q ∈ L2(Ω × (0, t̄)) не
известна. Пусть задана функция данных наблюдений Tobs(x, y, t) на Ω̄ ≡ Ω ∪ ∂Ω при
t ∈ (0, t̄), которая по своему физическому смыслу есть приближение к функции поверх-
ностной температуры на Ω, т. е. к T |z=0. Считаем, что Tobs ∈ L2(Ω× (0, t̄)) и допускается
случай, когда Tobs имеется лишь на некотором подмножестве из Ω× (0, t̄), характеристи-
ческую функцию которого обозначим через m0. Вне этого подмножества для определен-
ности считаем Tobs нулевой.

Будем предполагать, что данные наблюдений Tobs заданы с ошибками, а именно

Tobs = m0T
t |z=0 +ξobs, (2.4)

где T t — точное решение задачи (2.1) при некотором Q = Qt:

T tt + LT t = F +BQt, t ∈ (0, t̄),

T t = T0 при t = 0,
(2.5)

а ξobs ∈ Yobs = L2(Ω × (0, t̄)) рассматривается как ошибка наблюдений. Предполагает-
ся, что ошибки ξobs случайны и распределены по нормальному закону (Гаусса) с ну-
левым математическим ожиданием и ковариационным оператором R· = E[(·, ξobs)ξobs],



100 СИБИРСКИЙ ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ. 2024. Т. 27, N◦-- 1

R : Yobs → Yobs, где E — математическое ожидание. Ковариационные матрицы ошибок
наблюдений играют важную роль при вариационном усвоении данных: обратные к ним
матрицы включаются в качестве весовых операторов в исходный функционал стоимо-
сти [8]. В дальнейшем мы будем предполагать, что R положительно определен и, значит,
обратим.

Рассмотрим следующую задачу вариационного усвоения данных: найти T и Q, такие
что 

Tt + LT = F +BQ, t ∈ (0, t̄),

T = T0 при t = 0,

J(Q) = inf
Q
J(Q),

(2.6)

где

J(Q) =
1

2

t̄∫
0

∫
Ω

(
Q−Q(0)

)
B−1

(
Q−Q(0)

)
dΩ dt+

1

2

t̄∫
0

∫
Ω

(
m0T |z=0 −Tobs

)
R−1

(
m0T |z=0 −Tobs

)
dΩ dt,

Q(0) = Q(0)(x, y, t) — заданная функция, B : Yobs → Yobs — ковариационный оператор
ошибок начального приближения. Функция Q(0) обычно выбирается в качестве началь-
ного приближения (бэкграунда) для неизвестного потока Q.

Далее будем предполагать, что функция Q(0) также задана с ошибками:

Q(0) = Qt + ξb,

где Qt удовлетворяет точной задаче (2.5), а ξb ∈ Yb = L2(Ω × (0, t̄)) рассматривает-
ся как ошибка бэкграунда. Предполагается, что ошибки ξb случайны и распределены
по нормальному закону с нулевым математическим ожиданием и ковариационным опе-
ратором B· = E[(·, ξb)ξb]. Слагаемое с весовым оператором B−1 в функционале J(Q)
играет роль регуляризации по Тихонову [21]. Если оператор B положительно определен,
то поставленная задача вариационного усвоения данных имеет единственное решение.
Существование оптимального решения следует из классических результатов теории экс-
тремальных задач [2], так как можно показать, что решение задачи (2.2) непрерывно
зависит от потока Q (имеют место априорные оценки в соответствующих функциональ-
ных пространствах).

Необходимое условие оптимальности grad J = 0, которое определяет решение сфор-
мулированной задачи вариационного усвоения данных, приводит к системе оптимально-
сти [2, 20]:

Tt + LT = F +BQ, t ∈ (0, t̄),

T = T0 при t = 0,
(2.7)

−(T ∗)t + L∗T ∗ = BR−1m0(B∗T − Tobs), t ∈ (0, t̄),

T ∗ = 0 при t = t̄,
(2.8)
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B−1(Q−Q(0)) +B∗T ∗ = 0 на Ω× (0, t̄), (2.9)

где L∗, B∗ — операторы, сопряженные к L и B, соответственно.
Схема аппроксимации исходной задачи минимизации J последовательностью задач

минимизаций на временных подынтервалах была предложена в [4], см. также [20].
Входными данными в системе оптимальности (2.7)–(2.9) являются данные наблю-

дений Tobs и данные о начальном приближении для потока тепла Q(0). Нас будет ин-
тересовать чувствительность функционалов от оптимального решения к этим входным
данным.

3. Чувствительность функционалов к входным данным

Введем обозначение U = (Q(0), Tobs)
>. Рассмотрим функцию G(T ), зависящую от T ,

которая предполагается вещественнозначной и может рассматриваться как функционал
на X = L2(D × (0, t̄)). Нас интересует чувствительность функционала G(T ) к входным
данным U при условии, что T получена после вариационного усвоения из системы опти-
мальности (2.7)–(2.9). Как известно [1, 22], чувствительность функционала к U опреде-
ляется его градиентом по U , который связан с производной Гато:

dG

dU
=
∂G

∂T

∂T

∂U
. (3.1)

Обозначим через δU = (δQ(0), δTobs)
> вариацию вектор-функции U , где δQ(0), δTobs —

вариации функций Tobs и Q(0) соответственно. Из (2.7)–(2.9) получаем систему оптималь-
ности для вариаций:

δTt + LδT = BδQ, t ∈ (0, t̄),

δT = 0 при t = 0,
(3.2)

−(δT ∗)t + L∗δT ∗ = BR−1m0(B∗δT − δTobs), t ∈ (0, t̄),

δT ∗ = 0 при t = t̄,
(3.3)

B−1(δQ− δQ(0)) +B∗δT ∗ = 0 на Ω× (0, t̄). (3.4)

Система (3.2)–(3.4) эквивалентна следующей задаче оптимального управления для опре-
деления δT, δQ: 

δTt + LδT = BδQ, t ∈ (0, t̄),

δT = 0 при t = 0,

S(δQ) = inf
Q
S(Q),

(3.5)

где

S(δQ) =
1

2

t̄∫
0

∫
Ω

(
δQ− δQ(0)

)
B−1

(
δQ− δQ(0)

)
dΩ dt+

1

2

t̄∫
0

∫
Ω

(
m0δT |z=0 −δTobs

)
R−1

(
m0δT |z=0 −δTobs

)
dΩ dt. (3.6)
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Справедлива следующая

Лемма. Гессиан H функционала (3.6) определяется на q ∈ L2(Ω×(0, t̄)) последователь-
ным решением задач

ψt + Lψ = Bq, t ∈ (0, t̄),

ψ = 0 при t = 0,
(3.7)

−(ψ∗)t + L∗ψ∗ = BR−1m0B
∗ψ, t ∈ (0, t̄),

ψ∗ = 0 при t = t̄,
(3.8)

Hq = B−1q +B∗ψ∗. (3.9)

Доказательство. Согласно системе оптимальности (3.2)–(3.4), градиент функциона-
ла (3.6) определяется по формуле

gradS = B−1(δQ− δQ(0)) +B∗δT ∗, (3.10)

где δT ∗ — решение сопряженной задачи (3.3). Продифференцируем последнюю формулу
еще раз по δQ, чтобы получить гессиан

Hq = B−1q +B∗ψ∗,

где q — вариация δQ, а ψ∗ — решение сопряженной задачи (3.8), которая есть не что
иное, как продифференцированная задача (3.3). При этом ψ — решение задачи (3.7),
которая получена из (3.2) дифференцированием по δQ. Лемма доказана.

Определим оператор C : L2(Ω × (0, t̄)) → L2(Ω × (0, t̄)), действующий на функции
g ∈ L2(Ω× (0, t̄)) по формуле

Cg = B∗θ∗, (3.11)

где θ∗ — решение сопряженной задачи

−(θ∗)t + L∗θ∗ = BR−1m0g, t ∈ (0, t̄),

θ∗ = 0 при t = t̄.
(3.12)

Используя (3.7)–(3.12), нетрудно видеть [23], что система (3.2)–(3.4) эквивалентна
уравнению для вариации оптимального решения δQ

HδQ = PδU, (3.13)

где P =
(
B−1, C

)
. Гессиан H действует в L2(Ω × (0, t̄)) с областью определения D(H) =

L2(Ω × (0, t̄)), он ограничен, самосопряжен и неотрицательно определен. Из (3.7)–(3.9)
следует, что

(Hq, q) = (B−1q +B∗ψ∗, q) = (B−1q, q) + (ψ∗, Bq)

= (B−1q, q) + (BR−1m0B
∗ψ,ψ) = (B−1q, q) + (R−1m0B

∗ψ,B∗ψ) ≥ (B−1q, q).

Таким образом, если B−1 — положительно определен, то и H положительно определен.
В последнем случае уравнение (3.13) имеет единственное решение

δQ = H−1PδU. (3.14)

Формула (3.14) дает в явном виде выражение для вариаций оптимального решения
δQ через вариации вектор-функции входных данных δU = (δQ(0), δTobs)

>. Поскольку
H−1PδU = H−1B−1δQ(0) + H−1CδTobs, то уравнение вида (3.14) может быть положено
в основу исследования чувствительности оптимального решения и его функционалов к
ошибкам входных данных U = (Q(0), Tobs)

>.
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Справедлива

Теорема 3.1. Градиент функционала G(T ) по U = (Q(0), Tobs)
> имеет вид

∇UG =

(
∂G

∂Q(0)
,
∂G

∂Tobs

)>
, (3.15)

где
∂G

∂Q(0)
= B−1H−1F , ∂G

∂Tobs
= C∗H−1F , F = B∗φ∗, (3.16)

C∗ — оператор, сопряженный к C, H — гессиан, определенный формулами (3.7)–(3.9), а
φ∗ — решение сопряженной задачи

−(φ∗)t + L∗φ∗ =
∂G

∂T
, t ∈ (0, t̄),

φ∗ = 0 при t = t̄.
(3.17)

Доказательство. Рассмотрим значение градиента ∇UG на вариации δU = (δQ(0),
δTobs)

> : (
∇UG, δU

)
=

(
∂G

∂T
, δT

)
Y

, (3.18)

где δQ(0) — вариация функции Q(0), δTobs — вариация функции Tobs, δT =
∂T

∂T
δU —

решение системы (3.2)–(3.4).
Кроме того, заметим, что

(
∇UG, δU

)
=

(
∂G

∂Q(0)
, δQ(0)

)
Yobs

+

(
∂G

∂Tobs
, δTobs

)
Yobs

. (3.19)

Задача (3.17) является сопряженной по отношению к (3.2), поэтому, в силу соотно-
шения сопряженности,(

∂G

∂T
, δT

)
Y

= (φ∗, BδQ)Y = (B∗φ∗, δQ)Yobs . (3.20)

Из (3.18), (3.20) получаем(
∇UG, δU

)
=
(
B∗φ∗, δQ

)
Yobs

=
(
F , δQ

)
Yobs

, (3.21)

где F определяется по формуле (3.16).
Уравнение для δQ определяется формулой (3.14), отсюда

(F , δQ)Yobs = (F ,H−1PδU)Yobs = (P ∗H−1F , δU). (3.22)

Таким образом, из (3.21), (3.22) имеем(
∇UG, δU

)
= (P ∗H−1F , δU), (3.23)

или
∇UG = P ∗H−1F . (3.24)
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Поскольку P ∗ =
(
B−1, C∗

)>, то из (3.19) и (3.24) получаем

∇UG =

(
∂G

∂Q(0)
,
∂G

∂Tobs

)>
= (B−1H−1F , C∗H−1F)>,

откуда следует утверждение теоремы.

4. Алгоритм вычисления градиента функционала

Пусть q — решение уравнения Hq = F , тогда q = H−1F , а из (3.15) имеем

∇UG = (B−1q, C∗q)>. (4.1)

Нетрудно убедиться в том [16], что сопряженный оператор C∗ : L2(Ω×(0, t̄))→ L2(Ω×
(0, t̄)) определяется на u ∈ L2(Ω× (0, t̄)) по формуле

C∗q = m0R
−1B∗φ, (4.2)

где φ — решение задачи
φt + Lφ = Bq, t ∈ (0, t̄),

φ = 0 при t = 0.
(4.3)

Тогда, согласно (3.24), градиент ∇UG имеет вид

∇UG = (B−1q,m0R
−1B∗φ)>. (4.4)

Из (4.1)–(4.4) и (3.15)–(3.17) заключаем, что тем самым доказана

Теорема 4.1. Градиент ∇UG функционала G(T ) по U = (Q(0), Tobs)
> определяется

последовательным выполнением следующих шагов :

1) решить сопряженную задачу

−(φ∗)t + L∗φ∗ = ∂G
∂T

, t ∈ (0, t̄),

φ∗ = 0 при t = t̄,
(4.5)

полагая
F = B∗φ∗;

2) найти q как решение уравнения с гессианом :

Hq = F ; (4.6)

3) решить прямую задачу

φt + Lφ = Bq, t ∈ (0, t̄),

φ = 0 при t = 0;
(4.7)

4) вычислить градиент функционала по формуле

∇UG = (B−1q,m0R
−1B∗φ)>. (4.8)
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Отметим, что в процессе отыскания градиента функционала нет необходимости вы-
числять обратный гессиан H−1, который фигурирует в (3.16), достаточно просто решить
задачу Hu = F вида (4.6), например, итерационным методом.

Алгоритм (4.5)–(4.8) с учетом конкретного вида производных ∂G

∂T
использовался при

численных расчетах для оценки чувствительности функций отклика, связанных с тем-
пературой после усвоения данных наблюдений.

В численных примерах, следуя [16], рассматривались функции отклика как функци-
оналы вида

G(T ) =

t̄∫
0

dt

∫
Ω

F ∗(x, y, t)T (x, y, 0, t) dΩ, (4.9)

где F ∗(x, y, t) — некая весовая функция, связанная с полем температуры на поверхности
z = 0. Так, для определения средней температуры в избранной акватории океана ω при
z = 0 в интервале t1 − τ ≤ t ≤ t1 в качестве F ∗ выбирается функция

F ∗(x, y, t) =

{
1
/

(τmesω), если (x, y) ∈ ω, t1 − τ ≤ t ≤ t1,
0, в противном случае, (4.10)

где mesω означает площадь района ω. В этом случае функционал (4.9) представляется
в виде

G(T ) =
1

τ

t1∫
t1−τ

dt

(
1

mesω

∫
ω

T (x, y, 0, t) dΩ

)
. (4.11)

С использованием обозначений, введенных выше, функционал (4.9) записывается в
виде скалярного произведения:

G(T ) =

t̄∫
0

(BF ∗, T ) dt = (BF ∗, T )Y , Y = L2(D × (0, t̄)).

В силу того, что (
∂G

∂T
, δT

)
Y

= (BF ∗, δT )Y ,

производная от G по T определяется по формуле
∂G

∂T
= BF ∗. (4.12)

Таким образом, при реализации сформулированного выше алгоритма исследования
чувствительности на первом шаге решается сопряженная задача

−(φ∗)t + L∗φ∗ = BF ∗, t ∈ (0, t̄),

φ∗ = 0 при t = t̄,
(4.13)

которая в классической форме записи имеет вид

−φ∗t −Div(Ūφ∗)−Div(âT gradφ∗) = 0 в D × (0, t̄),

φ∗ = 0 при t = T в D, (4.14)

−νT
∂φ∗

∂z
= F ∗ на ΓS × (0, t̄),

∂T

∂NT
= 0 на Γ \ ΓS × (0, t̄),

где функция F ∗ входит в граничное условие на поверхности моря ΓS .
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5. Результаты численных экспериментов

Численные эксперименты проводились с использованием трехмерной численной мо-
дели гидротермодинамики Балтийского моря, разработанной в ИВМ РАН [24] на основе
метода расщепления [25] и дополненной процедурой усвоения температуры поверхности
моря (ТПМ) для восстановления тепловых потоков Q с учетом ковариационных матриц
ошибок наблюдений и ошибок начального приближения. При проведении численных экс-
периментов были выбраны модификации граничных условий, согласно [25].

Модельная область Балтийского моря расположена от 9.375 в. д. до 30.375 в. д. и
от 53.625 с.ш. до 65.9375 с.ш. Пространственное разрешение модели составляет 1/16◦×
1/32◦×25 по долготе, широте и вертикали. Сеточная область в горизонтальной плоско-
сти содержит 336×394 узлов, σ-уровни неравномерно распределены по глубине. Шаг по
времени равен 5 мин.

В качестве Tobs использовались среднесуточные данные температуры поверхности
Балтийского моря, полученные с портала океанографических данных Copernicus
(http://data.marine.copernicus.eu). Среднесуточные поля ТПМ, обработанные в Датском
метеорологическом институте на основе спутниковых данных инфракрасных радиомет-
ров [26], были проинтерполированы на расчетную сетку численной модели [27]. Данные
наблюдений на 1 мая 2018 года, используемые в численном эксперименте, представле-
ны на рисунке 1 a. По многолетним данным наблюдений ТПМ с 1982 г. по 2017 г. были
рассчитаны статистические характеристики ТПМ (математическое ожидание и диспер-
сии) отдельно для каждого года, согласно формулам, представленным в [28]. Полученные
дисперсии брались в качестве диагональных элементов ковариационной матрицы ошибок
наблюдений R, которая используется в функционале стоимости. На рис. 2 a представле-
ны результаты расчета диагональных элементов R для 1 мая 2018 года.

а) средняя температура поверхности моря, ◦C б) поток тепла на поверхности, Вт/м2

Рис. 1. Данные, используемые при расчетах

Для расчета атмосферного воздействия в модели использовались метеорологические
характеристики, в том числе эмпирические формулы (так называемые “балк-форму-
лы” [29]) для расчета турбулентных течений на поверхности моря. Рассчитанные таким
же образом значения среднего климатического теплового потока Q(0) использовались в
процедуре усвоения данных в качестве начального приближения (бэкграунда). Пример
рассчитанного потока тепла на 1 мая 2018 года приведен на рис. 1 б. Статистические
характеристики ковариационных матриц ошибок начального приближения B были по-
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лучены на основе данных о потоках тепла на поверхности моря за период с 1979 г. по
2020 г. в соответствии с реанализом ERA5 [30], аналогично вычислениям для R. На
рис. 2 б представлены результаты расчета диагональных элементов B для 1 мая 2018
года.

а) диагональные элементы R б) диагональные элементы B

Рис. 2. Значения диагональных элементов ковариационных матриц

Используя модель гидротермодинамики Балтийского моря, дополненную процедурой
усвоения температуры поверхности Tobs, были проведены численные расчеты на исследу-
емой акватории. Алгоритм усвоения работал лишь в некоторые моменты времени tk, при
этом tk+1 = t̄ = tk + ∆t. При реализации процедуры усвоения на одном шаге по времени
(tk, tk+1) рассматривалась система вида (2.7)–(2.9) с диагональными ковариационными
матрицами B и R.

Разработанный алгоритм (4.5)–(4.8) позволяет определять области наибольшего гра-
диента функции отклика как средней по интервалу температуры поверхности океана для
избранного района, полученной в результате процедуры усвоения. На основе представ-
ленного алгоритма была рассчитана чувствительность функционала к ошибкам входных
данных с использованием ковариационных матриц ошибок данных наблюдений и оши-
бок бэкграунда. Результаты расчета градиента функционала по отношению к ошибкам
данных наблюдений для 1 мая 2018 года представлены на рис. 3 а. Согласно этим резуль-
татам, можно заключить, что северная часть Ботнического залива наиболее чувстви-
тельна к данным ошибкам c максимальным значением 5.0×10−2. Отметим, что южная
часть Ботнического залива и значительная область западного побережья Балтийского
моря также чувствительны к ошибкам данных наблюдений. Интервал значений функ-
ции чувствительности здесь от 0.5×10−2 до 1.0×10−2. Финский залив и юго-восточная
часть Балтийского моря, согласно проведенным расчетам, является, наоборот, наименее
чувствительной областью. Здесь значения градиента функции отклика около 1.0× 10−3,
т. е. на порядок меньше, чем в областях с большей чувствительностью.

На рис. 3 б аналогичным образом рассчитана чувствительность рассматриваемого
функционала к ошибкам бэкграунда на 1 мая 2018 года. Заметим, что в данном случае
чувствительность на 4 порядка меньше, чем в предыдущем случае, с максимальными зна-
чениями около 3.0×10−6. Легко заметить из рисунка, что наибольшая чувствительность
функционала к ошибкам бэкграунда прослеживается у побережья Балтийского моря,
особенно в южной и восточной частях моря. Наименьшая чувствительность к ошиб-
кам бэкграунда наблюдается в южной части Ботнического залива, здесь она составляет
5.0×10−8, что на 2 порядка меньше максимального значения.
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а) ∂G

∂Tobs
на 1 мая 2018 г. б) ∂G

∂Q(0)
на 1 мая 2018 г., ×10−6

Рис. 3. Градиент функционала G(T )

Из рисунков 3 а и 3 б следует, что в целом чувствительность рассматриваемого функ-
ционала к данным бэкграунда намного меньше, чем чувствительность к данным наблю-
дений.

Эти результаты подтверждаются прямыми вычислениями функционала G(T ), в со-
ответствии с (4.11), полученного после вариационного усвоения, путем введения возму-
щений в данные наблюдений Tobs и в начальное приближение Q(0), следуя работе [16].

Таким образом, сформулированный алгоритм (4.5)–(4.8) позволяет оценивать чув-
ствительность функционалов, связанных с температурой поверхности моря после усвое-
ния, по отношению к ошибкам данных наблюдений и ошибкам начального приближения
в случае, когда значения этих ошибок заранее не известны.

6. Заключение

В настоящей работе проведено исследование чувствительности функционалов от ре-
шения задачи вариационного усвоения к входным данным для модели термодинамики
моря с целью восстановления потоков тепла на поверхности. Разработанный алгоритм
позволяет вычислять градиенты функционалов от оптимального решения, полученного
в ходе усвоения, одновременно по отношению к данным наблюдений и к данным на-
чального приближения для потока тепла. Вычисление полного градиента функционала
требует однократного решения уравнения с гессианом функции стоимости и решения
прямой и сопряженной задач, при этом вычисления обратного гессиана не требуется.
В результате применения данного алгоритма можно определять области наибольшего
градиента функции отклика как средней по интервалу температуры поверхности океана
для избранного района, полученной в результате процедуры усвоения. Численные экс-
перименты для модели динамики Балтийского моря подтверждают работоспособность
предложенного алгоритма. Проведенные исследования могут быть полезны для опреде-
ления районов моря, в которых функционалы от оптимального решения наиболее чув-
ствительны к произвольным возмущениям во входных данных при использовании проце-
дуры вариационного усвоения, в том числе в случаях, когда значения этих возмущений
заранее не известны. Методология оценки градиентов функций отклика может быть ис-
пользована в проблеме оптимального размещения сенсоров и станций наблюдений для
решения практических задач вариационного усвоения данных.
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