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В статье показана возможность применения известного класса аналитических автомодельных решений 

типа бегущей тепловой волны для нелинейной интегро-дифференциальной системы уравнений, описывающей 

перенос лучистой энергии для нестационарного, квазистационарного и регулярного режимов поведения 

решения. Решения строятся в декартовой геометрии для кинетической модели при специально подобранных 

коэффициентах поглощения и рассеяния. Приводится пример тестовой задачи для рассмотренных режимов 

поведения решения. 
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Введение 

Аналитические решения представляют интерес в качестве тестов для численных 

методов. Если они позволяют качественно и корректно моделировать различные 

физические процессы, то ценность таких решений резко возрастает. Точным решениям 

в области теории переноса нейтральных частиц в различных приближениях посвящено 

большое количество работ. Однако многие из известных точных решений не являются 

в некотором смысле «универсальными». В частности, они могут быть применимы для кон-

кретного типа геометрии, для одной модели энергетического спектра или описывать 

часть характеристик радиационного поля и т.д. Одним из распространенных приемов 

получения точных решений является добавление в исходные уравнения вспомогатель-

ных членов. Это может оказаться удобным для тестирования программного кода, 

но существенно искажает поведение решения и снижает практическую значимость таких 

решений. В 1979 году сотрудниками РФЯЦ — ВНИИТФ было предложено точное 

автомодельное решение уравнения переноса фотонов в плоском слое для нестационар-

ной кинетической модели в чисто поглощающей среде [1]. В этой работе для построения 

решения предлагалось использовать предопределенный вид коэффициента поглощения 

и пропорциональность уравнения состояния четвертой степени температуры, а также 

представление температуры в виде автомодельной переменной. Такой подход сближает 

данную работу с исследованием [2], где были предложены различные варианты точных 
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автомодельных решений для уравнения теплопроводности также в плоской геометрии. 

В дальнейшем проводились работы по развитию и совершенствованию указанного 

направления, например, [3 – 5]. Этот подход оказался весьма плодотворным, и предло-

женный класс точных решений широко используется специалистами РФЯЦ — ВНИИТФ, 

в том числе и автором, [6 – 8]. В представленной работе показана возможность приме-

нения рассматриваемой методологии построения точных решений для регулярного режима 

расчета. 

1. Постановка задачи 

Система уравнений, описывающая распространение излучения в неподвижной 

среде, состоит из спектрального кинетического уравнения переноса, представляющего 

перенос, поглощение и рассеяние теплового излучения, и уравнения энергии, харак-

теризующего изменение температуры вещества. Согласно [9, 10], уравнения в равновес-

ном спектральном случае без учета движения среды для изотропного рассеяния в декар-

товой геометрии выглядят следующим образом: 
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здесь  , , ,I t r Ω  — интенсивность излучения в точке с радиус-вектором r в момент вре-

мени t в направлении Ω,      c s, , ,T T T          — коэффициент ослабления, рав-

ный сумме коэффициентов поглощения и рассеяния соответственно,  ,T tr  — температура 
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функция Планка (   4B T T  — в приближении «серой материи»), , p  — положи-

тельные константы,    , t r  — плотность вещества,  — энергия фотонов. 

Для системы уравнений (1) в области  пространства nR  c замкнутой границей   

решается смешанная задача с начальными и граничными условиями: 
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Система (1) описывает нестационарный перенос излучения. Для локальной произ-

водной по времени 
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ности, 
0

t  — характерное время задачи. Пространственные производные можно оценить 

как / ,I I LΩ  где L — характерный размер. Отношение производной по времени 

к пространственной по порядку величины равно 0 / ,ct L  а величина /L c  по порядку совпа-

дает со временем, за которое свет проходит исследуемый объем 
n

t . Таким образом, 
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получим оценку 
0
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Ω  которая приводит к квазистационарной форме 

уравнения переноса 
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в случае, когда свет проходит рассматриваемую область за время, много меньшее, чем 
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Здесь интегрирование ведется вдоль координаты l выбранного луча от границы тела 0.l  
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то тогда решение нестационарного уравнения выходит на регулярный режим, где 

параметр   может быть определен как предел логарифмической производной от интег-

ральной интенсивности излучения по времени. В этом случае получаем 
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Можно рассмотреть также квазирегулярный режим, на который выходит решение 
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При этом краевые условия остаются в силе с точностью до переобозначения. Так как 

асимптотическое решение (4) имеет экспоненциальный характер, функции  , , , ,I t r Ω  

 ,T   зависят от времени гораздо слабее, чем решение  , , , .I t r Ω  Уравнения переноса 
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в квазирегулярном (6) и регулярном (5) режимах занимают промежуточное положение 

между нестационарным (1) и квазистационарным (2) режимами. Подробно этот вопрос 

рассматривался в работе [11]. Отметим, что для учета нестационарности решение 

уравнения в форме (5) неоднократно использовалось Гольдиным В.Я. и его коллегами 

в методе квазидиффузии [12–14]. Данный подход позволяет существенно экономить 

память компьютера, так как отсутствует необходимость хранения величин интенсив-

ности с предыдущего шага. 

2. Автомодельные аналитические решения 

Согласно работе [8], далее будем рассматривать многокомпонентную гомогенную 

смесь, состоящую из m -веществ, которая удовлетворяет следующей модели [15]: 
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здесь  , t r  — автомодельная переменная,  , 0f r Ω  — некоторая функция, 
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здесь 1 0, ,t    — константы. Предполагая степенную зависимость энергии вещества 

от температуры, представим уравнение состояния в форме ,hE CT  где  C T   
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Очевидно, что  C T  будет константой только в случае h = 4, что, впрочем, несущест-

венно снижает практическую ценность изложенного подхода. Таким образом, получено 

решение для нестационарного случая [8]. Для квазистационарного режима достаточно 

положить в функции  ,f r Ω  производную по времени 0.
t
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что приводит к виду  , ,f r Ω  как и в нестационарном случае. Следовательно, рассмат-

риваемые точные решения в нестационарном и регулярном режимах совпадают. Данный 

факт в некотором смысле «подтверждает корректность» использования регулярного 

режима для моделирования нестационарных задач. Отметим, что для криволинейных 

геометрий в рамках рассматриваемого подхода это не так в силу того, что функция 

 , ,f tr Ω  становится зависимой от времени [16]. 

Окончательно можно сделать вывод, что, хотя в данной работе не рассматривалось 

представление точного решения в форме, аналогичной (3), (6), тем не менее автором 
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менной, остается прежней. 

3. Пример 
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Тогда точное автомодельное решение будет описываться формулами: 
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здесь 0,5 / (3 5 / 3000)     в нестационарном и регулярном режимах и 0,5 / 3    — 

в квазистационарном. 
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Задача решалась в плоской геометрии в области  0,1z  с использованием метода 

дискретных ординат с гауссовой квадратурой, состоящей из 20 узлов [9, 10]. Конечно-

разностная схема строилась методом конечных объемов. Для аппроксимации временной 

производной использовалась неявная схема Эйлера, для пространственной — противопо-

точная St-схема первого порядка точности и DDAD-схема (метод дискретных ординат с ис-

кусственной диссипацией), разработанная и применяемая в РФЯЦ — ВНИИТФ [17]. В об-

щем случае использовать DDAD-схему затруднительно ввиду ее немонотонности и непо-

ложительности, поэтому для коррекции отрицательных значений применяется переклю-

чение на St-схему. Для регулярного режима в каждой ячейке сетки параметр λ вычис-

лялся с первым порядком точности по формуле 1 1 ,n n n nI d I d t I d  
   
     
   
   
  
Ω Ω Ω

Ω Ω Ω  

где n — индекс шага по времени. Во всех расчетах сеточный шаг по времени составлял 

0,0001,nt   по пространству — 0,02.z   Выполнялось 500 шагов до момента време-

ни 0,05.t   Итерации по температуре сводились с точностью до 
610 .

 

Результаты расчетов и аналитическое решение, представляющее собой линейную 

волну, исходящую из начала координат, представлены на рис. 1, 2. Видно, что рассмот-

ренные точные решения для различных режимов подтверждаются расчетами и числен-

ные решения температурного профиля, полученные в различных режимах, практически 

неотличимы. Можно отметить, что DDAD/St-схема, в основном сохраняющая второй 

порядок точности, практически близка к точному решению на 50 ячейках, тогда как 

схема первого порядка показывает сопоставимый результат на 1600 ячейках. Также 

видны осцилляции численных решений по DDAD/St-схеме на фронте тепловой волны, 

которые вызваны переключением в разные моменты на схему первого порядка и свя-

занным с этим изменением количества итераций. Напротив, St-схема демонстрирует 

монотонный профиль, и для всех трех рассматриваемых режимов она дает совпадающие 

решения температуры с точностью до константы сходимости. Для упрощения воспри-

ятия эти графики на рисунках не приводятся. Отметим, что максимальная величина 

отклонения от точного решения в расчетах на 50 ячейках в нестационарном режиме 

для St-схемы составила 0,085, для DDAD/St-схемы — 0,019. 

 
 

Рис. 1. Результаты DDAD/St-схемы и St-схемы 
в нестационарном режиме. 

1 — результаты аналитического решения, 

2, 3 — расчет по St-схеме с 1600 и 50 ячейками соответственно, 
4 — расчет по DDAD/St-схеме с 50 ячейками. 



Теплофизика и аэромеханика, 2024, том 31, № 1 

173 

Приведенный пример показывает возможность применения рассматриваемого 

класса точных решений для исследования численных методов в трех различных поста-

новках. 

Заключение 

В представленной работе показано, что ранее известный класс точных автомо-

дельных решений для нелинейной нестационарной системы кинетического уравнения 

переноса излучения и энергии в поглощающей, излучающей и изотропно рассеивающей 

среде включает в себя случаи квазистационарного и регулярного режимов. 

Несмотря на некоторые недостатки рассмотренного подхода, важным, по мнению 

автора, является простота его реализации и описания первичной фундаментальной вели-

чины — интенсивности излучения .I  Это дает возможность получения и других радиа-

ционных характеристик среды, что особенно актуально при разработке и отладке мето-

дов моделирования задач лучистого теплообмена. 
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Рис. 2. Увеличенный фрагмент рис. 1 с результатами 

расчетов по DDAD/St-схеме с 50 ячейками 
и по St-схеме в нестационарном режиме с 1600 ячейками. 

1 — результаты аналитического решения, 2 — расчет по St-схеме, 

3 – 5 — расчет по DDAD/St-схеме соответственно 

в нестационарном, в квазистационарном и в регулярном режимах. 
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