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С использованием степенной модели Оствальда — Райнера в частном случае n = 2 (ди-
латантная жидкость) получено аналитическое (точное) решение уравнений двумерного
пограничного слоя неньютоновской вязкой жидкости при наличии массообмена. Отме-
чено, что в данном случае кажущаяся вязкость описывается выражением, совпадающим
с выражением для турбулентной вязкости ньютоновской жидкости, полученным с по-
мощью модели пути перемешивания Прандтля. Установлено, что в рассматриваемом
частном случае имеется аналогия между течениями неньютоновской жидкости и нью-
тоновской жидкости с турбулентной вязкостью.
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Исследование гидродинамики, тепло- и массообмена неньютоновских жидкостей яв-
ляется важным направлением механики, поскольку эти жидкости активно используются
в современных технологиях. Изучению указанных процессов посвящено большое количе-
ство работ, что обусловлено многообразием форм движения неньютоновских сред, описы-
ваемых различными реологическими моделями. Одними из наиболее сложных являются
движения вязкоупругих сред, которые описываются реологическим соотношением Макс-
велла и его различными модификациями.

Точные решения в механике жидкости и газа используются при анализе особенностей

рассматриваемых течений, а также при верификации численных методов, применяемых в
этой области. В теории пограничного слоя ньютоновских жидкостей известно небольшое
число таких решений, систематизированных Л. Розенхедом [1].

Течения нелинейно-вязких жидкостей описываются достаточно сложными уравнения-
ми в частных производных в зависимости от выбранной реологической модели. Несмотря
на это, точные решения получены для различных неньютоновских сред [2], при этом боль-
шую роль играют групповые методы исследований уравнений в частных производных [3].
Решения уравнений движения микрополярных и вязкоупругих сред получены в работе [4].

В работах [5, 6] представлен обзор предложенных реологических моделей, описываю-
щих течения нелинейно-вязких жидкостей. Отмечено, что степенное реологическое соот-
ношение, предложенное В. Оствальдом [7] и модифицированное М. Рейнером [8], позволяет
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с удовлетворительной для практики точностью описывать неньютоновское поведение ано-
мально вязких жидкостей.

Двухпараметрическая модель Оствальда — Райнера записывается в виде

τij = δijP + k(0,5ėlmėlm)(n−1)/2ėij ,

где ėij — тензор скоростей деформации; k, n — постоянные величины, которые подбирают-
ся в результате вискозиметрических исследований какой-либо жидкости; параметр n < 1
соответствует псевдопластичной жидкости, n = 1 — ньютоновской жидкости, n > 1 —
дилатантной жидкости. Кажущаяся вязкость аномально вязких жидкостей определяется
по соотношению

µv = k(0,5ėlmėlm)(n−1)/2,

где при n < 1 вязкость µv уменьшается с увеличением скорости сдвига, при n = 1 вязкость
постоянна: µv = k, при n > 1 вязкость µv увеличивается с увеличением скорости сдвига.

Получено большое количество точных решений двумерных уравнений движения сте-
пенных неньютоновских жидкостей (см., например, [9–11]). Следует отметить, что в ра-
боте [4] также получено точное решение для частного случая, когда вязкость изменяется
по степенному закону. В [9, 10] применяется модель степенной жидкости Оствальда —
де Виля, где n < 1.

В одном из частных случаев решение можно получить в элементарных аналитиче-
ских функциях в замкнутом виде. В случае степенного реологического закона для ненью-
тоновской жидкости при стационарном обтекании полубесконечной пластины уравнение

пограничного слоя при n = 2 (дилатантная жидкость) имеет вид [12]

|F ′′|/F ′′′ + FF ′′ = 0, (1)

где F ′ = U/U∞ — безразмерная скорость.
При условии, что производная профиля скорости F ′′ > 0, уравнение (1) разделяется

на два линейных обыкновенных дифференциальных уравнения

F ′′(y) = 0; (2)

F ′′′(y) + F (y) = 0 (3)

с граничными условиями

F (0) = A; (4)

F ′(0) = 0; (5)

lim
y→∞

F ′ = 1. (6)

Параметр A = const определяет массообмен на поверхности пластины. При A < 0 проис-
ходит вдув жидкости через поверхность, при A > 0 — отсос жидкости.

Уравнение (2) описывает невозмущенное течение, уравнение (3) — пристенное вязкое

течение, и его решение известно [13]:

F (y) = C1 e−y + e−y/2 [C2 cos (β) + C3 sin (β)], β =
√

3 y/2.

Стыковка решений осуществляется при некотором минимальном значении независимой

переменной y = ymin. Это значение находится из граничного условия (6): F ′|y=ymin
= 1 и

дополнительного условия F ′′|y=ymin
= 0. В результате для четырех неизвестных постоян-

ных C1, C2, C3, ymin записывается система нелинейных алгебраических уравнений, реше-
ние которой определяет представленное в элементарных функциях аналитическое решение

уравнения пограничного слоя неньютоновской жидкости в рассматриваемом частном слу-
чае.
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Следует отметить, что для рассматриваемого двумерного пограничного слоя дила-
тантной жидкости при n = 2 выражение для кажущейся вязкости

µv = k(0,5ėlmėlm)1/2

совпадает с формулой для модели пути перемешивания Прандтля для двумерного турбу-
лентного пограничного слоя ньютоновской жидкости

µv = k
√

0,5
[(∂u

∂y

)2]1/2
= k

√
0,5

∂u

∂y
.

Выражение для эффективного коэффициента турбулентной вязкости µT имеет вид

µT = ρl2
∣∣∣∂u

∂y

∣∣∣,
где ρ — плотность жидкости; l — длина пути перемешивания. При этом предполагается,
что длина пути перемешивания l постоянна по нормали и не зависит от y. В этом слу-
чае турбулентное течение ньютоновской жидкости можно считать аналогичным течению

неньютоновской дилатантной жидкости в пограничном слое при n = 2. Действительно,
в работе [14] изучается истекание плоской турбулентной струи ньютоновской жидкости в
затопленное пространство. Уравнение движения совпадает с уравнением (1).

В отсутствие массообмена на поверхности пластины (A = 0) для постоянных получа-
ем соотношения [12]

C2 = −C1, C3 =
√

3 C1.

Значение величины, определяющей трение на поверхности пластины, вычисляется из урав-
нения

F ′′
∣∣
y=0

= 3C1,

переменная ymin находится из уравнения

e−3a + 2 cos (βmin) = 0,

постоянная C1 определяется с использованием значения ymin из уравнения

C1 =
2 e−a

2
√

3 sin (βmin)− 3 e−3a
, βmin =

√
3

ymin

2
, a =

ymin

2
.

В работе [12] получены значения C1 = 0,242 155 9, ymin = 1,832 44, F ′′(0) = 0,726 467 7.
Значения величин ymin, F ′′(0), полученные при численном решении дифференциальных
уравнений [5], равны ymin = 1,8, F ′′(0) = 0,7265.

При наличии массообмена на поверхности пластины (A 6= 0) получаем систему нели-
нейных алгебраических уравнений для определения неизвестных постоянных C1, C2, C3,
ymin при различных значениях параметра A, соответствующих отсосу (A > 0) или вду-
ву (A < 0) в пограничный слой через обтекаемую поверхность. В этом случае задача

определения постоянных C1, C2, C3, ymin существенно усложняется. Постоянные C2, C3

выражаются через C1:

C2 = A− C1, C3 =
√

3 C1 − A/
√

3 ,

выражение для величины, определяющей трение, имеет вид

F ′′(0) = 3C1 − A.

Путем последовательного исключения переменных система четырех уравнений сводится

к одному алгебраическому уравнению относительно ymin, которое является нелинейным.
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Параметры решения уравнения (7) при n = 2

A C1 F ′′(0) ymin

−0,35 −0,059 94 0,170 170 2,641 59
−0,30 −0,001 61 0,295 167 2,423 67
−0,20 0,090 10 0,470 290 2,164 46
−0,10 0,169 34 0,608 010 1,987 33

0 0,242 16 0,726 470 1,849 81
0,20 0,376 35 0,929 040 1,641 61
0,50 0,560 49 1,181 460 1,423 27
1,00 0,841 64 1,524 920 1,187 47
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Зависимости F ′′(0) (1) и ymin (2) от параметра A при n = 2

Поскольку получить аналитическое решение этого уравнения невозможно, оно решалось
численно. Наличие особых точек существенно затрудняет определение физически обосно-
ванных значений корней уравнения для ymin при различных значениях параметра отсоса

(вдува) A. Это уравнение имеет вид[
A

(
2µ− γ3

√
3

)
+

2√
3

(
γ +

√
−(Aµ)2 +

√
3 A2γ3µ + 2Aγ4 + γ2 + 0,25A2γ6

)]
(1− γ6)−

−
(
A + γ4 +

1√
3

√
A2(4γ6 − 1) + 6Aγ4 + 4γ2 − γ8

)
(2µ− γ3

√
3 ) = 0, (7)

где µ = sin (βmin); γ = e−a; βmin =
√

3 ymin/2; a = ymin/2. Определив ymin, постоянную C1

можно найти по формуле

C1 =
(
A + γ4 +

√
(A + γ4)2 − (4/3)(A2 − γ2)(1− γ6)

)
/[2(1− γ6)].

Результаты расчетов представлены в таблице и на рисунке. Следует отметить, что в
работе [5] также представлены решения уравнения для пограничного слоя в случае ненью-
тоновских жидкостей, но расчеты при n = 2 и A < 0 не проводились.
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