АППАРАТУРА И МЕТОДЫ ОПТИЧЕСКОЙ ДИАГНОСТИКИ ОКРУЖАЮЩЕЙ СРЕДЫ

УДК 535.343.4

Оценка эффективности лазерного возбуждения молекул оксида фосфора

С.М. Бобровников, Е.В. Горлов, В.И. Жарков*

Институт оптики атмосферы им. В.Е. Зуева СО РАН 634055, г. Томск, пл. Академика Зуева, 1

Поступила в редакцию 24.02.2021 г.

Выполнен расчет колебательных и вращательных термов электронных состояний $X^2\Pi$ и $A^2\Sigma^+$ молекулы РО. Рассчитан спектр поглощения, соответствующий переходу $A^2\Sigma^+(v' = 0; J') - X^2\Pi(v'' = 0; J'')$. Проведена оценка эффективности лазерного возбуждения молекул РО в зависимости от спектральных параметров излучения.

Ключевые слова: спектр поглощения, оксид фосфора; absorption spectrum, phosphorus oxide.

Введение

В УФ- и видимом диапазонах спектры поглощения многоатомных молекул, как правило, характеризуются наличием широких и бесструктурных полос [1], что препятствует обнаружению этих молекул спектроскопическими методами. Однако при взаимодействии сложных многоатомных молекул с излучением высокой интенсивности или с фотонами высокой энергии возможна их диссоциация с образованием более простых молекул – двух-, трехатомных фрагментов (осколков). Последующее целенаправленное эффективное возбуждение флуоресценции в молекулах-осколках будет сигнализировать о наличии исходного вещества. Таким образом, применение лазерной фрагментации позволяет свести задачу обнаружения сложных соединений к задаче обнаружения более простых молекул, характеризующихся сильными и хорошо разрешаемыми переходами.

Метод, предполагающий совместное использование лазерной фрагментации (ЛФ) и лазерноиндуцированной флуоресценции (ЛИФ), был впервые предложен в [2] для *in situ* обнаружения малых газовых составляющих атмосферы. Экспериментально подтвержденная высокая чувствительность ЛФ/ЛИФ-метода (менее ppb) [3, 4] сделала его привлекательным для решения задач обнаружения низких концентраций веществ в атмосфере.

Метод нашел широкое применение для детектирования нитросоединений [5–25], воды [26, 27], гидроксида дейтерия [26], пероксида водорода [28, 29], озона [30, 31], азотистой кислоты [32] и др. Возможность использования метода ЛФ/ЛИФ для обнаружения органофосфатов была продемонстрирована в [13, 33, 34], где в качестве характеристического фрагмента использовалась функциональная группа РО. Несмотря на глубокую проработку метода, расчеты и результаты экспериментов свидетельствуют о принципиальной возможности дальнейшего повышения его эффективности. Очевидным направлением на пути достижения максимальной эффективности метода ЛФ/ЛИФ является определение оптимальных условий фрагментации и возбуждения флуоресценции. Цель настоящей работы оценить эффективность лазерного возбуждения РОфрагментов в зависимости от спектральных параметров излучения.

Расчет колебательных и вращательных термов электронных состояний $X^2\Pi$ и $A^2\Sigma^+$ молекулы РО

Полную энергию двухатомной молекулы в заданном состоянии можно представить в виде

$$T = T_e + G(v) + F(J) \tag{1}$$

с практически достаточной во многих случаях точностью. Здесь T_e – электронная энергия; G(v) – колебательная энергия; F(J) – вращательная энергия; v, J – колебательное и вращательное квантовые числа молекулы соответственно.

Колебательная энергия молекулы G(v), соответствующая модели так называемого ангармонического осциллятора, определяется как

$$G(v) =$$

 $= \omega_e(v+1/2) - \omega_e x_e(v+1/2)^2 + \omega_e y_e(v+1/2)^3 + \dots, (2)$

где ω_e — частота гармонических колебаний; $\omega_e x_e$ и $\omega_e y_e$ — постоянные ангармонизма. Для вращательной энергии молекулы F(J), соответствующей модели нежесткого ротатора и учитывающей взаимодей-

© Бобровников С.М., Горлов Е.В., Жарков В.И., 2021

^{*} Сергей Михайлович Бобровников (bsm@iao.ru); Евгений Владимирович Горлов (gorlov_e@mail.ru); Виктор Иванович Жарков (zharkov@iao.ru).

ствие между колебательным и вращательным движениями молекулы, запишем

$$F(J) = B_v J(J+1) - D_v J^2 (J+1)^2 + \dots$$
(3)

Вращательные постоянные B_v , D_v , ... зависят от уровня колебательного возбуждения v: $B_v = B_e - \alpha_e(v + 1/2) + ..., D_v = D_e - \beta_e(v + 1/2) + ...,$ где B_e , α_e , ..., D_e , β_e — вращательные молекулярные постоянные.

Основное состояние ²П молекулы РО представляет собой мультиплет, состоящий из двух компонент ${}^{2}\Pi_{1/2}$ и ${}^{2}\Pi_{3/2}$, значения вращательных термов которых можно определить как [35]:

$$F_{1}(J) = B_{v} \left\{ (J + 1/2)^{2} - \Lambda^{2} - \frac{1}{2} \left[4(J + 1/2)^{2} + Y(Y - 4)\Lambda^{2} \right]^{1/2} \right\} - \frac{D_{v}(J - 1/2)^{2}(J + 1/2)^{2}}{F_{2}(J)} = B_{v} \left\{ (J + 1/2)^{2} - \Lambda^{2} + \frac{1}{2} \left[4(J + 1/2)^{2} + Y(Y - 4)\Lambda^{2} \right]^{1/2} \right\} - \frac{D_{v}(J + 1/2)^{2}(J + 3/2)^{2}}{D_{v}(J + 1/2)^{2}(J + 3/2)^{2}}.$$
(5)

Здесь $Y = A_v/B_v$, где A_v – константа спин-орбитального взаимодействия; $F_1(J)$ и $F_2(J)$ – серии термов, отвечающих J = N - 1/2 и J = N + 1/2 соответственно. Взаимодействие состояния ²П с другими электронными состояниями симметрии Σ снимает вырождение по знаку квантового числа Λ , приводит к Λ удвоению компонент дублета. Таким образом, колебательно-вращательная энергия двухатомной мо-

лекулы в состоянии ²П определяется следующими выражениями:

$$T_1(v, J) = T_e + G(v) + F_1(J) \pm F_1^{\Lambda}(J), \qquad (6)$$

$$T_2(v, J) = T_e + G(v) + F_2(J) \pm F_2^{\Lambda}(J),$$
(7)

где индексы 1, 2 соответствуют компонентам ${}^{2}\Pi_{1/2}$, ${}^{2}\Pi_{3/2}$. Для определения энергии Λ -удвоения $F_{i}^{\Lambda}(J)$ каждой из компонент использовались выражения [36]:

$$F_1^{\Lambda}(J) = (J + 1/2) \Big[(-1 - Y/X - 2/X) (p_v/2 + q_v) + 2X^{-1} (J + 3/2) (J - 1/2) q_v \Big],$$
(8)

$$F_{2}^{\Lambda}(J) = (J + 1/2) [(1 - Y/X + 2/X)(p_{v}/2 + q_{v}) + 2X^{-1}(J + 3/2)(J - 1/2)q_{v}], \qquad (9)$$

где $X = \left[Y(Y+4) + 4(J+1/2)^2\right]^{1/2}$; p_v и q_v – постоянные Λ -удвоения.

Вращательная энергия в случае состояния $^{2}\Sigma$ определялась как [37]:

$$F_1(N) = B_v N(N+1) - D_v N^2 (N+1)^2 + \gamma N/2,$$
(10)

$$F_2(N) = B_v N(N+1) - D_v N^2 (N+1)^2 - \gamma (N+1)/2, (11)$$

где $F_1(N)$ относится к компонентам, имеющим J = N - 1/2; $F_2(N) - \kappa$ компонентам с J = N + 1/2; γ – константа.

Рассчитанные значения термов для состояний $X^2\Pi(v''=0)$ и $A^2\Sigma^+(v'=0)$ представлены в табл. 1; молекулярные постоянные, входящие в выражения для расчета термов — в табл. 2.

Таблица 1

Значения термов (в см ⁻¹) для состояний $X^2 \Pi(v''=0)$ и $A^2 \Sigma^+(v'=0)$	
---	--

I		$X^2\Pi(v''$	= 0)	1 0 5	$A^2\Sigma^+(v'=0)$			
J	F_{1e}	F_{1f}	F_{2e}	F_{2f}	J = 0, 3	F_{1e}	F_{2f}	
1	2	3	4	5	6	7	8	
0,5	503,73890	503,75149			0	41100,52250	41102,06958	
1,5	505,91785	505,94305	728,51318	728,51318	1	41102,08068	41105,17482	
2,5	509,55362	509,59142	732,17916	732,17916	2	41105,19332	41109,83446	
3,5	514,64615	514,69655	737,31142	737,31143	3	41109,86036	41116,04844	
4,5	521,19537	521,25838	743,90986	743,90988	4	41116,08174	41123,81667	
5,5	529,20119	529,27680	751,97436	751,97439	5	41123,85737	41133,13903	
6,5	538,66347	538,75170	761,50475	761,50480	6	41133,18713	41144,01537	
7,5	549,58208	549,68294	772,50086	772,50093	7	41144,07087	41156,44553	
8,5	561,95684	562,07033	784,96248	784,96259	8	41156,50843	41170,42932	
9,5	575,78756	575,91369	798,88939	798,88954	9	41170,49962	41185,96653	
10,5	591,07403	591,21280	814,28133	814,28153	10	41186,04423	41203,05692	
11,5	607,81599	607,96741	831,13801	831,13827	11	41203,14202	41221,70025	
12,5	626,01318	626,17727	849,45914	849,45946	12	41221,79275	41241,89621	
13,5	645,66530	645,84208	869,24437	869,24478	13	41241,99611	41263,64451	
14,5	666,77205	666,96152	890,49335	890,49386	14	41263,75181	41286,94481	
15,5	689,33308	689,53525	913,20571	913,20632	15	41287,05951	41311,79677	
16,5	713,34803	713,56291	937,38102	937,38175	16	41311,91887	41338,20000	
17,5	738,81650	739,04412	963,01885	963,01972	17	41338,32950	41366,15411	
18,5	765,73809	765,97845	990,11875	990,11978	18	41366,29101	41395,65867	
19,5	794,11235	794,36548	1018,68024	1018,68143	19	41395,80297	41426,71324	
20,5	823,93882	824,20474	1048,70279	1048,70416	20	41426,86494	41459,31734	

Оценка эффективности лазерного возбуждения молекул оксида фосфора

Окончание табл. 1

1	2	3	4	5	6	7	8
21,5	855,21702	855,49574	1080,18587	1080,18745	21	41459,47644	41493,47047
22,5	887,94643	888,23797	1113,12893	1113,13074	22	41493,63697	41529,17213
23,5	922,12653	922,43090	1147,53137	1147,53342	23	41529,34603	41566,42176
24,5	957,75674	958,07397	1183,39258	1183,39490	24	41566,60306	41605,21881
25,5	994,83648	995,16660	1220,71193	1220,71454	25	41605,40751	41645,56268
26,5	1033,36515	1033,70818	1259,48875	1259,49167	26	41645,75878	41687,45276
27,5	1073,34212	1073,69807	1299,72235	1299,72561	27	41687,65626	41730,88841
28,5	1114,76671	1115,13562	1341,41202	1341,41564	28	41731,09931	41775,86899
29,5	1157,63826	1158,02015	1384,55702	1384,56102	29	41776,08729	41822,39379
30,5	1201,95606	1202,35095	1429,15658	1429,16099	30	41822,61949	41870,46212
31,5	1247,71937	1248,12729	1475,20992	1475,21477	31	41870,69522	41920,07324
32,5	1294,92744	1295,34841	1522,71621	1522,72153	32	41920,31374	41971,22641
33,5	1343,57949	1344,01355	1571,67462	1571,68043	33	41971,47431	42023,92084
34,5	1393,67471	1394,12189	1622,08429	1622,09061	34	42024,17614	42078,15573
35,5	1445,21228	1445,67260	1673,94430	1673,95118	35	42078,41843	42133,93026
36,5	1498,19134	1498,66483	1727,25376	1727,26123	36	42134,20036	42191,24358
37,5	1552,61101	1553,09771	1782,01172	1782,01980	37	42191,52108	42250,09482
38,5	1608,47040	1608,97034	1838,21721	1838,22594	38	42250,37972	42310,48309
39,5	1665,76857	1666,28178	1895,86924	1895,87865	39	42310,77539	42372,40746

Таблица 2

Молекулярные постоянные (в см⁻¹) оксида фосфора РО

Постоянная	$X^2 \Pi_r$		$A^2 \Sigma^+$	
T_{e}	0		40406,8	[41]
ω_e	1233,34	[38]	1390,9	[41-43]
$\omega_e x_e$	6,56	[38]	6,91	[41-43]
$\omega_e y_e$	-0,005	[38]		
B_{e}	0,7337	[38]	0,78040	[42]
α_e	0,0055	[38]	0,00549	[42]
β_e	$D_e \! \left(\! rac{8 \omega_e x_e}{\omega_e} \! - \! rac{5 lpha_e}{B_e} \! - \! rac{lpha_e^2 \omega_e}{24 B_e^3} ight)$	[39]	$D_e \left(\frac{8 \omega_e x_e}{\omega_e} - \frac{5 \alpha_e}{B_e} - \frac{\alpha_e^2 \omega_e}{24 B_e^3} \right)$	[39]
γ_e	$4,7 \cdot 10^{-7}$	[40]		
δ_e	$6,5\cdot 10^{-8}$	[40]		
ϵ_e	$2,7\cdot 10^{-9}$	[40]		
D_e	$rac{4B_e^3}{\omega_e^2}$	[39]	$rac{4B_e^3}{\omega_e^2}$	[39]
A_v	$224,03 + 0,18v - 0,013v^2$	[38]		
p_v	$6,2 \cdot 10^{-3} + 4,8 \cdot 10^{-5} \left(v + \frac{1}{2}\right) - 2q_v$	[40]		
q_v	$-2,2\cdot 10^{-5} + 1,2\cdot 10^{-6} \left(\upsilon + \frac{1}{2}\right)$	[40]		

Расчет ү(0, 0)-полосы поглощения молекулы РО

Положение линий

Для случая *а*-связи по Гунду, когда спинорбитальное расщепление значительно больше вращательной энергии и взаимодействие вращения с электронным движением слабое, могут иметь место все переходы, отвечающие правилам отбора

$$\Delta J = 0, \ e \leftrightarrow f;$$

$$\Delta J = \pm 1, \ e \leftrightarrow e, \ f \leftrightarrow f$$

В этом случае каждую полосу перехода ${}^{2}\Sigma^{+} - {}^{2}\Pi$ можно разделить на полосы ${}^{2}\Sigma^{+} - {}^{2}\Pi_{1/2}$ и ${}^{2}\Sigma^{+} - {}^{2}\Pi_{3/2}$, которые отстоят одна от другой на величину дублетного расщепления состояния ${}^{2}\Pi$. Для полосы ${}^{2}\Sigma^{+} - {}^{2}\Pi_{1/2}$ будут иметь место шесть ветвей: Q_{11} , P_{11} , R_{11} – главные ветви и Q_{21} , P_{21} , R_{21} – ветвисателлиты; для полосы ${}^{2}\Sigma^{+} - {}^{2}\Pi_{3/2}$: Q_{22} , P_{22} , R_{22} – главные ветви и Q_{12} , P_{12} , R_{12} – ветви-сателлиты.

Результат расчета волновых чисел линий ветвей представлен в табл. З. Видно, что вследствие малого дублетного расщепления состояния $^{2}\Sigma$ ветви Q_{11} и P_{21} , P_{22} и Q_{12} , Q_{22} и R_{12} , R_{11} и Q_{21} не разрешаются, так как попарно лежат очень близко друг к другу.

Таблица З

Волновые числа (в см⁻¹) линий в полосе $A^2 \Sigma^+(v'=0) - X^2 \Pi(v''=0)$

$J^{\prime\prime}$	P_1	P_2	Q_1	Q_2	R_1	R_2	${P}_{12}$	R_{12}	Q_{12}	Q_{21}	P_{21}	R_{21}
0,5			40596,77		40598,34					40598,33		40601,42
1,5	40594,61	40373,56	40596,14	40376, 66	40599,28	40381,32	40372,01	40376,68	40373,57	40599,26	40596,13	40603,89
2,5	40592,53	40373,00	40595,60	40377,66	40600,31	40383,87	40369,90	40377,68	40373,01	40600,28	40595,58	40606,46
3,5	40590,55	40372,52	40595,16	40378,74	40601,44	40386,51	40367,88	40378,77	40372,55	40601,40	40595,14	40609,12
4,5	40588,67	40372,14	40594,82	40379,91	40602,66	40389,23	40365,95	40379,95	40372,17	40602,62	40594,79	40611,88
5,5	40586,88	40371,84	40594,58	40381,17	40603,99	40392,04	40364,11	40381,21	40371,88	40603,94	40594,54	40614,74
6,5	40585,19	40371,63	40594,44	40382,51	40605,41	40394,94	40362,35	40382,57	40371,68	40605,35	40594, 39	40617,69
7,5	40583,61	40371,51	40594,39	40383,95	40606,93	40397,93	40360,69	40384,01	40371,57	40606,86	40594,33	40620,75
8,5	40582,11	40371,48	40594,44	40385,47	40608,54	40401,00	40359,11	40385,54	40371,55	40608,47	40594,38	40623,90
9,5	40580,72	40371,54	40594,59	40387,08	40610,26	40404,17	40357,62	40387,16	40371,61	40610,18	40594,52	40627,14
10,5	40579,43	40371,69	40594,83	40388,78	40612,07	40407,42	40356, 22	40388,86	40371,76	40611,98	40594,75	40630,49
11,5	40578,23	40371,92	40595,18	40390,56	40613,98	40410,76	40354,91	40390,66	40372,00	40613,88	40595,09	40633,93
12,5	40577,13	40372,24	40595,62	40392,44	40615,98	40414, 19	40353,68	40392,54	40372,33	40615,88	40595,52	40637,47
13,5	40576,13	40372,65	40596,15	40394,40	40618,09	40417,70	40352,55	40394,51	40372,75	40617,98	40596,05	40641,10
14,5	40575,22	40373,15	40596,79	40396, 45	40620,29	40421,30	40351,50	40396,57	40373,26	40620,17	40596,68	40644,84
15,5	40574,42	40373,74	40597,52	40398,59	40622,59	40424,99	40350,55	40398,71	40373,85	40622,46	40597,41	40648,67
16,5	40573,71	40374,42	40598, 36	40400,82	40624,98	40428,77	40349,68	40400,95	40374,54	40624,85	40598,23	40652,59
17,5	40573,10	40375, 18	40599, 29	40403, 14	$40627,\!48$	40432, 64	40348,90	40403,27	40375,31	40627, 34	40599, 16	40656,62
18,5	40572,59	40376,03	40600,31	40405,54	40630,07	40436, 59	40348,21	40405,68	40376,17	40629,92	40600, 18	40660,74
19,5	40572,18	40376,98	40601,44	40408,03	40632,75	40440, 64	40347,61	40408, 19	40377, 12	40632,60	40601,29	40664,95
20,5	40571,86	40378,01	40602,66	40410,62	40635,54	40444,77	40347,10	40410,77	40378,16	40635,38	40602,51	40669,27
21,5	40571,65	40379, 13	40603,98	40413,29	40638,42	40448,99	40346,68	40413,45	40379,29	40638, 25	40603,82	40673,68
22,5	40571,53	40380,34	40605, 40	40416,04	40641,40	40453, 29	40346, 35	40416,22	40380,51	40641,23	40605, 23	40678,18
23,5	40571,51	40381, 64	40606, 92	40418,89	40644, 48	40457, 69	40346,11	40419,07	40381,81	40644, 30	40606,74	40682,79
24,5	40571,59	40383,03	40608,53	40421,83	$40647,\!65$	40462, 17	40345,95	40422,02	40383,21	40647, 46	40608, 35	40687, 49
25,5	40571,77	40384,50	40610, 24	40424,85	40650,92	40466,74	40345,89	40425,05	40384,69	40650,73	40610,05	40692,29
26,5	40572,04	40386,07	40612,05	40427,96	40654, 29	40471,40	40345,92	40428, 17	40386,27	40654,09	40611,85	40697,18
27,5	40572,42	40387,73	40613,96	40431,17	40657,76	40476, 14	40346,04	40431,38	40387,93	40657,55	40613,76	40702,17
28,5	40572,89	40389,47	40615,96	40434,46	40661,32	40480,98	40346,24	40434,68	40389,68	40661,10	40615,75	40707,26
29,5	40573,46	40391,31	40618,07	40437,84	40664,98	40485,90	40346,54	40438,06	40391,53	40664,76	40617,85	40712,44
30,5	40574,13	40393,23	40620,27	40441,31	40668,74	40490,91	40346,93	40441,54	40393,46	40668,51	40620,04	40717,72
31,5	40574,90	40395,25	40622,57	40444,86	40672,59	40496,01	40347,41	40445, 10	40395,48	40672,35	40622, 34	40723,10
32,5	40575,77	40397,35	40624,97	40448,51	40676,55	40501, 20	40347,98	40448,76	40397,59	40676,30	40624,73	40728,57
33,5	40576,73	40399,55	40627,46	40452,25	40680, 60	40506, 48	40348, 64	40452,50	40399,79	40680, 34	40627,21	40734, 14
34,5	40577,80	40401,83	40630,05	40456,07	40684,74	40511,84	40349,39	40456,33	40402,09	40684, 48	40629,80	40739,81
35,5	40578,96	40404,21	40632,75	40459,99	40688,99	40517, 29	40350,23	40460, 26	40404,47	40688,72	40632,48	40745,57
36,5	40580,23	40406,67	40635,54	40463,99	40693,33	40522,83	40351,17	40464,27	40406, 94	40693,05	40635,27	40751,43
37,5	40581,59	40409,22	40638,42	40468,08	40697,77	40528, 46	40352, 19	40468, 37	40409,50	40697, 48	40638, 15	40757,39
38,5	40583,05	40411,87	40641,41	40472,27	40702,31	40534, 18	40353,30	40472,56	40412,15	40702,01	40641,12	40763,44
39,5	40584,61	40414,60	40644, 49	40476,54	40706, 94	40539,99	40354,51	40476, 84	40414,90	40706, 64	40644, 20	40769,59

Поэтому каждая полоса ($^{2}\Sigma^{+} - ^{2}\Pi_{1/2}$ и $^{2}\Sigma^{+} - ^{2}\Pi_{3/2}$) имеет только четыре ветви, две из которых образуют канты.

Сечения поглощения линий

Сечения поглощения для вращательных линий электронно-колебательно-вращательных переходов $A^2\Sigma^+(v'=0; J') - X^2\Pi(v''=0; J'')$ с учетом их уширения определялись по формуле, приведенной в [44]:

$$\sigma_{J'J'}(v) = \frac{1}{8\pi c v_0^2} \frac{2J'+1}{2J''+1} A_{J'J'} N_{J'} L(v), \qquad (12)$$

где v_0 — центр линии поглощения, см⁻¹; c — скорость света; J'' — вращательное квантовое число нижнего состояния; J' — вращательное квантовое число верхнего состояния; $A_{J'J'}$ — коэффициент Эйнштейна для спонтанного перехода; $N_{J'}$ — населен-

ность вращательного уровня J'' в условиях локального термодинамического равновесия. Функция L(v)определяет контур линии.

Коэффициенты Эйнштейна определялись как [45]:

$$A_{J'J'} = \frac{64\pi^4}{3h} \frac{g''_e}{g'_e} v^3_{J'J'} |R_e|^2 \frac{q_{v'v'} S_{J'J'}}{2J'+1}, \qquad (13)$$

где $g_e = (2 - \delta_{0,\Lambda})(2S + 1)$ — статистический вес электронного состояния; δ — символ Кронекера $(\delta_{0,\Lambda} = 1, если \Lambda = 0; \delta_{0,\Lambda} = 0, если \Lambda \neq 0); \Lambda$ — квантовое число, отвечающее собственному значению оператора проекции орбитального момента электронов на межъядерную ось; *S* — квантовое число суммарного спина электронов; множитель (2*S* + 1) учитывает вырождение по электронному спину; $v_{J'J'}$ волновое число линии; $|R_e|^2$ — квадрат матричного элемента дипольного момента; $q_{v'v'}$ — фактор Франка—Кондона; *S*_{I'J'} — фактор Хенля—Лондона.

Оценка эффективности лазерного возбуждения молекул оксида фосфора

Факторы Хенля—Лондона для рассматриваемого типа переходов были вычислены по формулам, приведенным в монографии І. Kovacs [46], для определения правила сумм применялись общепринятые рекомендации Е.Е. Whiting et al. [47, 48]. Для вычисления $|R_e|^2$ использовалось время жизни колебательного уровня v' = 0 [49]; для фактора Франка–Кондона электронно-колебательной полосы $A^2\Sigma^+(v'=0) - X^2\Pi(v''=0)$ – значение, рассчитанное с помощью потенциалов, полученных методом Ридберга–Клейна–Риса [49].

В предположении больцмановского распределения молекул по вращательным уровням энергии населенность вращательного уровня J'' низшего колебательного состояния при температуре T определяется выражением

$$N_{J''} = N_0 \frac{2J'' + 1}{Q_r} e^{-\frac{F(J'')hc}{kT}},$$
 (14)

где N_0 — полное число молекул в колебательном состоянии v'' = 0; (2J'' + 1) — степень вырождения состояниях J''; Q_r — вращательная статистическая сумма.

В расчетах предполагалось, что уширение линий обусловлено столкновением молекул, т.е. контур спектральной линии имеет лоренцевскую форму с полушириной *γ*_L:

$$L(v) = \frac{1}{\pi} \frac{\gamma_{\rm L}}{(v - v_0)^2 + \gamma_{\rm L}^2} \,. \tag{15}$$

Значение $\gamma_L = 0,25 \text{ см}^{-1}$ определено по коэффициенту столкновительного уширения молекулы NO при T = 300 К и давлении 1 атм [50].

Расчетный спектр полосы поглощения, соответствующий переходу $A^2 \Sigma^+(v'=0; J') - X^2 \Pi(v''=0)$ = 0; *J*"), при *T* = 300 К представлен на рис. 1. Здесь переход от волновых чисел v к длинам волн в воздухе λ_{air} проводился с учетом дисперсионной формулы для стандартного воздуха [51]:

$$\lambda_{air} = \frac{1}{\nu} - \left[\frac{1}{\nu} \left(8342, 13 + \frac{2406030}{130 - \nu^2} + \frac{15997}{38, 9 - \nu^2}\right) \cdot 10^{-8}\right], (16)$$

где v берется в мкм⁻¹; λ_{air} – в мкм.

Результаты расчетов участков спектра, соответствующих полосам поглощения ${}^{2}\Sigma^{+} - {}^{2}\Pi_{1/2}$ и ${}^{2}\Sigma^{+} - {}^{2}\Pi_{3/2}$, представлены на рис. 2 и 3.

Оценка эффективности возбуждения молекул РО

Из рис. 2 и 3 видно, что для эффективного лазерного возбуждения молекул РО необходимо выбирать длину волны излучения вблизи кантов в ветвях $(Q_{11} + P_{21})$ и P_{11} для полосы ${}^{2}\Sigma^{+} - {}^{2}\Pi_{1/2}$, $(P_{22} + Q_{12})$ и P_{12} для полосы ${}^{2}\Sigma^{+} - {}^{2}\Pi_{3/2}$. Эффективность возбуждения в зависимости от сочетания ширины спектральной линии лазерного излучения $\Delta\lambda$ и положения ее центра λ_{0} определялась по величине относительного поглощения мощности возбуждающего излучения:

$$\eta(\lambda_0, \Delta \lambda) = \frac{\int_{\lambda_2}^{\lambda_2} \sigma(\lambda) I(\lambda) d\lambda}{\int_{\lambda_2}^{\lambda_2} I(\lambda) d\lambda} .$$
 (17)

Здесь $\sigma(\lambda)$ — нормированная на единицу функция поглощения, вычисленная по формуле (12); $I(\lambda)$ — спектральное распределение интенсивности лазерного излучения; λ_1 и λ_2 — границы спектрального

Рис. 1. Спектр поглощения, соответствующий переходу $A^2 \Sigma^+(v'=0;J') - X^2 \Pi(v''=0;J'')$, при T = 300 К

Бобровников С.М., Горлов Е.В., Жарков В.И.

Рис. 2. Нормированный спектр поглощения, соответствующий переходу $A^2 \Sigma^+(v'=0;J') - X^2 \Pi_{1/2}(v''=0;J')$, при T = 300 К

Рис. 3. Нормированный спектр поглощения, соответствующий переходу $A^{2}\Sigma^{+}(v'=0;J') - X^{2}\Pi_{3/2}(v''=0;J'')$, при T = 300 К

диапазона, в котором расположен кант полосы поглощения. Расчеты выполнены в предположении, что лазерная линия имеет гауссову форму; ширина линии $\Delta\lambda$ в расчетах варьировалась от 1 до 10 пм. Ширина дисперсионного контура линии поглощения $\Delta v = 2\gamma_L$ принималась равной 0,5 см⁻¹, или в пересчете на длину волны — $\delta\lambda = 3$ пм. Результаты расчетов $\eta(\lambda_0, \Delta\lambda)$ приведены на рис. 4–7.

Как видно из рис. 4–7, эффективность возбуждения увеличивается с уменьшением спектральной ширины линии генерации $\Delta\lambda$. Поскольку полосы имеют фиолетовое оттенение (рис. 1–3), с увеличением $\Delta\lambda$ длина волны λ_0^{max} , при которой достигается максимальное значение η , смещается в коротковолновую область: при изменении $\Delta\lambda$ от 1 до 10 пм усредненная величина сдвига составляет примерно $\Delta\lambda/5$.

Зависимость эффективности $\eta(\lambda_0, \Delta\lambda)$ при $\lambda_0 = \lambda_0^{max}$ представлена на рис. 8. Видно, что вне зависимости от выбора «рабочего» канта уменьшение ширины спектра генерации лазера $\Delta\lambda$ от 3,3 $\delta\lambda$ до 0,3 $\delta\lambda$

Рис. 4. Эффективность возбуждения молекул РО вблизи канта ветви $Q_{11} + P_{21}$ при T = 300 К

Рис. 5. Эффективность возбуждения молекул РО вблизи канта ветви P_{11} при T = 300 К

Рис. 6. Эффективность возбуждения молекул РО вблизи канта ветви $P_{22}+Q_{12}$ при $T=300~{\rm K}$

Рис. 7. Эффективность возбуждения молекул РО вблизи канта ветви P_{12} при T = 300 К

Рис. 8. Зависимость эффективности возбуждения молекул PO от $\Delta\lambda$ при $\lambda_0 = \lambda_0^{max}$ для каждого канта

увеличивает эффективность возбуждения примерно в 1,5 раза. Отношение эффективностей возбуждения для разных пар кантов при этом меняется в широких пределах (табл. 4).

Чем меньше $\Delta\lambda$, тем чувствительнее η к положению λ_0 (см. рис. 4—7) и тем выше требования к стабильности длины волны возбуждающего лазера. Проведенные расчеты показали, что величина относительного смещения λ_0 от положения λ_0^{max} , при котором максимальное значение η уменьшается на 10% при заданном $\Delta\lambda$, с точностью до десятичного порядка составляет $10^{-6} - 10^{-5}$. Результаты расчета приведены в табл. 5.

Связывая полученные значения $(\lambda_0 - \lambda_0^{max})/\lambda_0^{max}$ с относительной стабильностью положения центра линии излучения лазера, можно заключить, что для обеспечения высокой эффективности возбуждения молекул РО показатель стабильности должен быть не более 10^{-5} .

Бобровников С.М., Горлов Е.В., Жарков В.И.

Таблица 4

Эффектириость	$\eta_{Q_{11} + P_{21}}$			$\eta_{P_{11}}$			$\eta_{P_{22} + Q_{12}}$			$\eta_{P_{12}}$		
возбуждения	<i>Δ</i> λ, πм											
	1	5	10	1	5	10	1	5	10	1	5	10
$\eta_{Q_{11}} + P_{21}$	1,00	1,00	1,00	4,83	4,70	4,50	2,55	2,52	2,52	23,59	22,50	21,02
$\eta_{P_{11}}$	0,21	0,21	0,22	1,00	1,00	1,00	0,53	0,54	0,56	4,88	4,79	4,67
$\eta_{P_{22} + Q_{12}}$	0,39	0,40	0,40	1,90	1,87	1,79	1,00	1,00	1,00	9,26	8,94	8,35
$\eta_{P_{12}}$	0,04	0,04	0,05	0,20	0,21	0,21	0,11	0,11	0,12	1,00	1,00	1,00

Отношения эффективностей возбуждения для разных парных комбинаций кантов $(\eta_{\text{строка}}/\eta_{\text{столбец}})$ при $\Delta\lambda = 1$; 5 и 10 пм и $\lambda_0 = \lambda_0^{\text{max}}$

Таблица 5

Значения относительных смещений ($\lambda_0 - \lambda_0^{max}$) / λ_0^{max} (× 10⁻⁶), при которых $\eta(\lambda_0^{max}, \Delta\lambda)$ уменьшается на 10%

Эффективность					Δλ	., ПМ				
возбуждения	1	2	3	4	5	6	7	8	9	10
$\eta_{Q_{11}} + P_{21}$	3,2	3,9	4,7	5,3	6,1	6,7	7,5	8,3	9,1	9,9
$\eta_{P_{11}}$	3,4	3,9	4,7	5,5	6,5	7,3	7,9	8,9	9,7	10,6
$\eta_{P_{22} + Q_{12}}$	3,4	4,0	4,6	5,2	6,1	6,7	7,5	8,1	8,9	9,7
$\eta_{P_{12}}$	3,6	4,2	4,8	5,9	6,7	7,7	8,5	9,5	10,5	11,5

Заключение

Проведенные расчеты показали, что для эффективного лазерного возбуждения молекул РО при инициировании переходов вблизи кантов ветвей $Q_{11} + P_{21}$, P_{11} , $P_{22} + Q_{12}$ и P_{12} необходимо обеспечить оптимальное сочетание ширины спектральной линии лазерного излучения $\Delta\lambda$ и положения ее центра λ_0 . Для молекул РО, находящихся в состоянии термодинамического равновесия при T = 300 К, максимальная эффективность возбуждения может быть достигнута при выборе длины волны лазерного излучения, соответствующей канту ветви $Q_{11} + P_{21}$.

Вне зависимости от выбора «рабочего» канта увеличение $\Delta\lambda$ на 1 пм приводит к смещению максимума кривой эффективности $\eta(\lambda_0, \Delta\lambda)$ в коротковолновую область на 0,2–0,3 пм и снижению $\eta(\lambda_0, \Delta\lambda)$ примерно на 4–5%. Установлено, что при заданном значении $\Delta\lambda$ в диапазоне 1–10 пм для достижения эффективности лазерного возбуждения на уровне 0,9–1 от максимального значения относительная стабильность положения центра линии излучения лазера должна быть не хуже 10⁻⁵.

Исследование выполнено при финансовой поддержке РНФ (проект № 20-79-10297).

- Keller-Rudek H., Moortgat G.K., Sander R., Sörensen R. The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest // Earth Syst. Sci. Data. 2013. V. 5. P. 365–373.
- Rodgers M.O., Asai K., Davis D.D. Photofragmentation-laser induced fluorescence: A new method for detecting atmospheric trace gases // Appl. Opt. 1980. V. 19, N 21. P. 3597–3605.
- 3. Rodgers M.O., Davis D.D. A UV-Photofragmentation / Laser-induced fluorescence sensor for the atmospheric detection of HONO // Environ. Sci. Technol. 1989. V. 23, N 9. P. 1106–1112.

- Sandholm S.T., Bradshaw J.D., Dorris K.S., Rodgers M.O., Davis D.D. An airborne compatible photofragmentation two-photon laser-induced fluorescence instrument for measuring background tropospheric levels of NO, NO_x, and NO₂ // J. Geophys. Res. D. 1990. V. 95, N 7. P. 10,155–10,161.
- Galloway D.B., Bartz J.A., Huey L.G., Crim F.F. Pathways and kinetic energy disposal in the photodissociation of nitrobenzene // J. Chem. Phys. 1993. V. 98, N 3. P. 2107-2114.
- Lemire G.W., Simeonsson J.B., Sausa R.C. Monitoring of vapor-phase nitro compounds using 226-nm radiation: fragmentation with subsequent NO resonanceenhanced multiphoton ionization detection // Anal. Chem. 1993. V. 65, N 5. P. 529–533.
- 7. Galloway D.B., Glenewinkel-Meyer T., Bartz J.A., Huey L.G., Crim F.F. The kinetic and internal energy of no from the photodissociation of nitrobenzene // J. Chem. Phys. 1994. V. 100, N 3. P. 1946–1952.
- Wu D.D., Singh J.P., Yueh F.Y., Monts D.L. 2,4,6-Trinitrotoluene detection by laser-photofragmentation– laser-induced fluorescence // Appl. Opt. 1996. V. 35, N 21. P. 3998–4003.
- 9. Simeonsson J.B., Sausa R.C. A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis // Appl. Spectrosc. Rev. 1996. V. 31, N 1. P. 1–72.
- 10. Swayambunathan V., Singh G., Sausa R.C. Laser photofragmentation-fragment detection and pyrolysislaser-induced fluorescence studies on energetic materials // Appl. Opt. 1999. V. 38, N 30. P. 6447-6454.
- 11. Daugey N., Shu J., Bar I., Rosenwaks S. Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (v = 0-3) // Appl. Spectrosc. 1999. V. 53, N 1. P. 57–64.
- Shu J., Bar I., Rosenwaks S. Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO // Appl. Opt. 1999. V. 38, N 21. P. 4705–4710.
- 13. Shu J., Bar I., Rosenwaks S. NO and PO photofragments as trace analyte indicators of nitrocompounds

Оценка эффективности лазерного возбуждения молекул оксида фосфора

and organophosphonates // Appl. Phys. B. 2000. V. 71, N 5. P. 665–672.

- 14. Shu J., Bar I., Rosenwaks S. The use of rovibrationally excited NO photofragments as trace nitrocompounds indicators // Appl. Phys. B. 2000. V. 70, N 4. P. 621–625.
- Arusi-Parpar T., Heflinger D., Lavi R. Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 °C: A unique scheme for remote detection of explosives // J. Appl. Opt. 2001. V. 40, N 36. P. 6677–6681.
- Heflinger D., Arusi-Parpar T., Ron Y., Lavi R. Application of a unique scheme for remote detection of explosives // Opt. Commun. 2002. V. 204, N 1–6. P. 327–331.
- Wynn C.M., Palmacci S., Kunz R.R., Zayhowski J.J., Edwards B., Rothschild M. Experimental demonstration of remote optical detection of trace explosives // Proc. SPIE. 2008. V. 6954. P. 695407-8.
- Arusi-Parpar T., Fastig S., Shapira J., Shwartzman B., Rubin D., Ben-Hamo Y., Englander A. Standoff detection of explosives in open environment using enhanced photodissociation fluorescence // Proc. SPIE. 2010. V. 7684. P. 76840L-7.
- Wynn C.M., Palmacci S., Kunz R.R., Rothschild M. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence // Opt. Express. 2010. V. 18, N 6. P. 5399–5406.
- 20. Wynn C.M., Palmacci S., Kunz R.R., Aernecke M. Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence // Opt. Express. 2011. V. 19, N 19. P. 18671–18677.
- 21. Бобровников С.М., Горлов Е.В. Лидарный метод обнаружения паров взрывчатых веществ в атмосфере // Оптика атмосф. и океана. 2010. Т. 23, № 12. С. 1055– 1061; Bobrovnikov S.M., Gorlov E.V. Lidar method for remote detection of vapors of explosives in the atmosphere // Atmos. Ocean. Opt. 2011. V. 24, N 3. P. 235–241.
- 22. Bobrovnikov S.M., Vorozhtsov A.B., Gorlov E.V., Zharkov V.I., Maksimov E.M., Panchenko Y.N., Sakovich G.V. Lidar detection of explosive vapors in the atmosphere // Rus. Phys. J. 2016. V. 58, N 9. P. 1217–1225.
- Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Puchikin A.V. Two-pulse laser fragmentation/laserinduced fluorescence of nitrobenzene and nitrotoluene vapors // Appl. Opt. 2019. V. 58, N 27. P. 7497-7502.
- 24. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Evaluation of limiting sensitivity of the one-color laser fragmentation/laser-induced fluorescence method in detection of nitrobenzene and nitrotoluene vapors in the atmosphere // Atmosphere. 2019. V. 10, N 11. P. 1–11.
- 25. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I., Panchenko Yu.N., Puchikin A.V. Dynamics of the laser fragmentation/laserinduced fluorescence process in nitrobenzene vapors // Appl. Opt. 2018. V. 57, N 31. P. 9381–9387.
- 26. Clair J.M. St., Hanisco T.F., Weinstock E.M., Moyer E.J., Sayres D.S., Keutsch F.N., Kroll J.H., Demusz J.N., Allen N.T., Smith J.B., Spackman J.R., Anderson J.G. A new photolysis laser-induced fluorescence instrument for the detection of H₂O and HDO in the lower stratosphere // Rev. Sci. Instrum. 2008. V. 79, N 6. P. 064101-1-14.
- 27. Larsson K., Johansson O., Aldén M., Bood J. Simultaneous visualization of water and hydrogen peroxide vapor using two-photon laser-induced fluorescence and photofragmentation laser-induced fluorescence // Appl. Spectrosc. 2014. V. 68, N 12. P. 1333–1341.

- Johansson O., Bood J., Aldén M., Lindblad U. Detection of hydrogen peroxide using photofragmentation laser-induced fluorescence // Appl. Spectrosc. 2008. V. 62, N 1. P. 66–72.
- 29. Johansson O., Bood J., Aldén M., Lindblad U. Hydroxyl radical consumption following photolysis of vaporphase hydrogen peroxide at 266 nm: Implications for photofragmentation laser-induced fluorescence measurements of hydrogen peroxide // Appl. Phys. B. 2009. V. 97, N 2. P. 515–522.
- 30. Larsson K., Hot D., Ehn A., Lantz A., Weng W., Aldén M., Bood J. Quantitative imaging of ozone vapor using photofragmentation laser-induced fluorescence (LIF) // Appl. Spectrosc. 2017. V. 71, N 7. P. 1578–1585.
- 31. Larsson K., Hot D., Gao J., Kong C., Li Z., Aldén M., Bood J., Ehn A. Instantaneous imaging of ozone in a gliding arc discharge using photofragmentation laserinduced fluorescence // J. Phys. D: Appl. Phys. 2018. V. 51, N 13. P. 1–7.
- 32. Liao W., Hecobian A., Mastromarino J., Tan D. Development of a photo-fragmentation/laser-induced fluorescence measurement of atmospheric nitrous acid // Atmos. Environ. 2006. V. 40, N 1. P. 17–26.
- 33. Long S.R., Sausa R.C., Miziolek A.W. LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate // Chem. Phys. Lett. 1985. V. 117, N 5. P. 505–510.
- 34. Bisson S.E., Headrick J.M., Reichardt T.A., Farrow R.L., Kulp T.J. A two-pulse, pump-probe method for short-range, remote standoff detection of chemical warfare agents // Proc. SPIE. 2011. V. 8018. P. 80180Q-1-7.
- 35. Hill E.L., Van Vleck J.H. On the quantum mechanics of the rotational distortion of multiplets in molecular spectra // Phys. Rev. 1928. V. 32, N 2. P. 250–272.
- 36. *Ĥinkley R.K.*, *Hall J.A.*, *Walker T.*, *Richards W.G.* Λ doubling in ²Π states of diatomic molecules // J. Phys. B: Atom. Molec. Phys. 1972. V. 5, N 2. P. 204–212.
- 37. Van Vleck J.H. On σ -type doubling and electron spin in the spectra of diatomic molecules // Phys. Rev. 1929. V. 33, N 4. P. 467–506.
- 38. Verma R.D., Singhal S.R. New results on the $B^{2}\Sigma^{+}$, $b^{4}\Sigma^{-}$, and $X^{2}\Pi$ states of PO // Can. J. Phys. 1975. V. 53. P. 411–419.
- Herzberg G. Molecular spectra and molecular structure. I. Spectra of diatomic molecules. Toronto: D. van Nostrand company, 1950. 732 p.
- 40. Bailleux S., Bogey M., Demuynck C., Liu Y., Walters A. Millimeter-wave spectroscopy of PO in excited vibrational states up to v = 7 // J. Mol. Spectrosc. 2002. V. 216, N 2. P. 465–471.
- 41. Rao K.S. Rotational analysis of the γ system of the PO molecule // Can. J. Phys. 1958. V. 36, N 11. P. 1526–1535.
- 42. Verma R.D., Jois S.S. Emission spectrum of the PO molecule. Part IV. Spectrum in the region 7000– 12000 Å // Can. J. Phys. 1973. V. 51, N 3. P. 322–333.
- 43. Coquart B., da Paz M., Prudhomme J.C. Transition $A^{2}\Sigma^{+} X^{2}\Pi$ des molecules P¹⁶O et P¹⁸O. Perturbations de l'etat $A^{2}\Sigma^{+}$ // Can. J. Phys. 1975. V. 53, N 4. P. 377–384.
- 44. Dorn H.-P., Neuroth R., Hofzumahaus A. Investigation of OH absorption cross sections of rotational transitions in the A²Σ⁺, v' = 0 ← X²Π, v'' = 0 band under atmospheric conditions: Implications for tropospheric longpath absorption measurements // J. Geophys. Res.: Atmos. 1995. V. 100, N 4. P. 7397–7409.
- 45. Kuznetsova L.A., Kuz'menko N.E., Kuzyakov Yu.Ya., Plastinin Yu.A. Probabilities of optical transitions in

electronic vibration-rotation spectra of diatomic molecules // Sov. Phys.-Usp. 1974. V. 17, N 3. P. 405–423.

- 46. Kovacs I. Rotational Structure in the Spectra of Diatomic Molecules. Budapest: Academic Kiado, 1969. 307 p.
- 47. Whiting E.E., Schadee A., Tatum J.B., Hougen J.T., Nicholls R.W. Recommended conventions for defining transition moments and intensity factors in diatomic molecular spectra // J. Mol. Spectrosc. 1980. V. 80, N 2. P. 249–256.
- 48. Whiting E.E., Paterson J.A., Kovács I., Nicholls R.W. Computer checking of rotational line intensity factors

for diatomic transitions // J. Mol. Spectrosc. 1973. V. 47, N 1. P. 84–98.

- 49. Wong K.N., Anderson W.R., Kotlar A.J. Radiative processes following laser excitation of the A²Σ⁺ state of PO // J. Chem. Phys. 1986. V. 85, N 5. P. 2406–2413.
- 50. Chang A.Y., DiRosa M.D., Hanson R.K. Temperature dependence of collision broadening and shift in the NO A ← X(0, 0) band in the presence of argon and nitrogen // J. Quant. Spectrosc. Radiat. Transfer. 1992. V. 41, N 5. P. 375-390.
- 51. Edlen B. The refractive index of air // Metrologia. 1966. V. 2, N 2. P. 12–80.

S.M. Bobrovnikov, E.V. Gorlov, V.I. Zharkov. Evaluation of the efficiency of laser excitation of phosphorus oxide molecules.

The vibrational and rotational terms of the $X^2\Pi$ and $A^2\Sigma^+$ electronic states of the PO molecule have been calculated, as well as the absorption spectrum corresponding to the transition $A^2\Sigma^+(v'=0; J') - X^2\Pi(v''=0; J'')$. The efficiency of laser excitation of PO molecules is estimated as a function of the spectral parameters of the radiation.