ВАЛИДАЦИЯ ДВУХТЕМПЕРАТУРНЫХ МОДЕЛЕЙ ДИССОЦИАЦИИ КИСЛОРОДА В ЗАДАЧЕ ОТРАЖЕНИЯ УДАРНОЙ ВОЛНЫ ОТ СТЕНКИ

Г. В. Шоев, А. А. Шершнев

Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН, Новосибирск, Россия E-mails: shoev@itam.nsc.ru, antony@itam.nsc.ru

Проведено сравнение численных распределений колебательной температуры молекулярного кислорода за отраженной ударной волной с данными экспериментальных измерений в ударной трубе. Расчеты проводились с использованием пяти двухтемпературных моделей (Парка, Кузнецова, β -модели, Мэрроуна — Тринора, Мачерета — Фридмана), соответственно пяти констант диссоциации и трех вариантов источникового члена, описывающего скорость изменения колебательной энергии вследствие химических реакций. Для расчета скорости поступательно-колебательного энергообмена используется модель Ландау — Теллера, при этом время колебательной релаксации вычисляется по формуле Милликена — Уайта с учетом высокотемпературной поправки Парка. Получено удовлетворительное согласие численных и экспериментальных данных. Установлено, что наибольшее различие численных и экспериментальных данных наблюдается в зоне релаксации за падающей на стенку ударной волной.

Ключевые слова: двухтемпературная диссоциация, многотемпературный подход, численное моделирование, неравновесное течение

Введение. В настоящее время компьютерное моделирование является одним из важнейших этапов проектирования новой и оптимизации существующей техники. Компьютерное моделирование течений газа средствами вычислительной гидродинамики широко применяется для исследования структуры потока вблизи возвращаемых капсул, потока внутри сопел двигателей управления и ориентации. В таких течениях перед спускаемым аппаратом формируется сильная головная ударная волна (УВ), температура за которой значительно (до десятков тысяч градусов) увеличивается. При таких больших значениях температуры в потоке происходят различные физические и химические процессы, в частности возбуждение внутренних мод молекул, химические реакции, излучение и поглощение, абляция на поверхности и др. Наиболее низкопороговыми по температуре являются процессы возбуждения колебательных (внутренних) мод молекул и химические реакции. Эти процессы могут протекать в условиях, реализующихся в ударных трубах в ходе экспериментальных исследований [1, 2] при валидации математических моделей. В настоящее время повышению степени достоверности результатов компьютерного моделирования,

Работа выполнена при финансовой поддержке Российского научного фонда (код проекта 22-19-00750). Численные эксперименты проведены с использованием ресурсов вычислительных центров Института теоретической и прикладной механики СО РАН и Новосибирского национального исследовательского государственного университета.

т. е. валидации математических моделей, уделяется большое внимание [3–5]. Результаты численных исследований [6] свидетельствуют о существенном влиянии колебательного возбуждения газа на положение области ламинарно-турбулентного перехода (на 12–14 % ниже по потоку, чем в совершенном газе), что подтверждает важность учета этих эффектов в компьютерном моделировании.

Целью настоящей работы является валидация двухтемпературных моделей диссоциации, реализованных в программном комплексе HyCFS (hybrid compressible flow solver) [7], путем сравнения численных и экспериментальных [1] распределений колебательной температуры за отраженной от стенки УВ. В программном комплексе HyCFS численно решаются уравнения Навье — Стокса для двухтемпературной модели, описывающей течение химически реагирующей смеси газов с неравновесным поступательно-колебательным энергообменом.

1. Уравнения Навье — Стокса для двухтемпературной модели. Рассматривается процесс отражения УВ от изотермической стенки для бинарной смеси O₂–O с учетом химических реакций и неравновесного поступательно-колебательного энергообмена. Предполагается, что поступательная и вращательная моды находятся в термическом равновесии. Задача решается в одномерной постановке. Соответствующие уравнения Навье — Стокса для двухтемпературной модели могут быть записаны в виде

$$\frac{\partial \boldsymbol{Q}}{\partial t} + \frac{\partial \boldsymbol{F}}{\partial x} - \frac{\partial \boldsymbol{F}_v}{\partial x} = \boldsymbol{S}.$$
(1)

Выражения для макроскопических (газо- и термодинамических) переменных Q, невязких F и вязких F_v потоков записываются следующим образом:

$$\boldsymbol{Q} = \begin{pmatrix} \rho \\ \rho Y_{\mathrm{O}} \\ \rho u \\ \rho E_{t-r} \\ \rho Y_{\mathrm{O}_2} E_v^{\mathrm{O}_2} \end{pmatrix}, \quad \boldsymbol{F} = \begin{pmatrix} \rho u \\ \rho Y_{\mathrm{O}} u \\ \rho uu + p \\ (\rho E_{t-r} + p) u \\ \rho Y_{\mathrm{O}_2} E_v^{\mathrm{O}_2} u \end{pmatrix},$$
$$\boldsymbol{F}_{v} = \begin{pmatrix} 0 \\ -\rho D_{\mathrm{O}} \frac{\partial Y_{\mathrm{O}}}{\partial x} \\ \frac{4}{3} \mu \frac{\partial u}{\partial x} \\ \frac{4}{3} \mu \frac{\partial u}{\partial x} \\ \frac{4}{3} \mu u \frac{\partial u}{\partial x} - \varkappa_{t-r} \frac{\partial}{\partial x} T_{t-r} + \sum_{l=\mathrm{O},\mathrm{O}_2} \rho D_l h_l \frac{\partial Y_l}{\partial x} \\ \mu_{\mathrm{O}_2} \frac{\partial}{\partial x} E_v^{\mathrm{O}_2} - \rho D_{\mathrm{O}_2} E_v^{\mathrm{O}_2} \frac{\partial Y_{\mathrm{O}_2}}{\partial x} \end{pmatrix}$$

Здесь ρ — плотность смеси O_2 -O; Y_O , Y_{O_2} — массовые доли атомарного и молекулярного кислорода соответственно; u — скорость потока; $E_{t-r} = C_v^{t-r}T_{t-r} + u^2/2$ — поступательновращательная энергия газа; C_v^{t-r} — поступательно-вращательная теплоемкость газа при постоянном объеме; T_{t-r} — поступательная (статическая) температура; $E_v^{O_2}$ — колебательная энергия компонента O_2 ; p — статическое давление; D_O , D_{O_2} — коэффициенты диффузии атомарного и молекулярного кислорода; μ — динамическая вязкость смеси; \varkappa_{t-r} — поступательно-вращательная теплопроводность; h_l — энтальпия компонента l ($l \in \{O_2, O\}$); μ_{O_2} — динамическая вязкость O_2 .

Источниковые члены $oldsymbol{S}$ записываются в виде

$$\boldsymbol{S} = \begin{pmatrix} 0 \\ R_{\rm O} \\ 0 \\ -\frac{h_{\rm O}^0}{W_{\rm O}} R_{\rm O} - \omega_{\rm O_2}^{vib} - \omega_{\rm O_2}^{chem} \\ \omega_{\rm O_2}^{vib} + \omega_{\rm O_2}^{chem} \end{pmatrix}$$

где R_l — скорости изменения компонентов смеси O_2 и О вследствие химических реакций $(l \in \{O_2, O\}); h_O^0, W_O$ — стандартная энтальпия образования и молекулярная масса атомарного кислорода O; $\omega_{O_2}^{vib}$ — скорость поступательно-колебательного энергообмена; $\omega_{O_2}^{chem}$ — скорость изменения колебательной энергии вследствие химических реакций.

Система уравнений (1) замыкается уравнением состояния идеального газа с учетом закона Дальтона:

$$p = \sum_{l=O_2,O} p_l = \rho R T_{t-r}, \qquad R = \sum_{l=O_2,O} Y_l \frac{\mathcal{R}}{W_l}$$

 $(\mathcal{R}$ — универсальная газовая постоянная).

Коэффициенты вязкости и теплопроводности смеси рассчитываются по правилу Уил-ки [8]

$$\xi = \sum_{i=O_2,O} \frac{x_i \xi_i}{\sum_{j=O_2,O} x_j \phi_{ij}}, \qquad \phi_{ij} = \frac{\left(1 + \sqrt{(\mu_i/\mu_j)}\sqrt{W_j/W_i}\right)^2}{\sqrt{8(1 + W_i/W_j)}},$$

где ξ — коэффициент динамической вязкости μ или теплопроводности смеси \varkappa_{t-r} ; x_i — мольная доля компонента *i*. Вязкость и теплопроводность компонентов смеси рассчитывались по формуле Гиршфельдера и Эйкена с поправкой Гиршфельдера [9]:

$$\mu_{i} = 2,67 \cdot 10^{-6} \frac{(W_{i}T_{t-r})^{0,5}}{\sigma_{i}^{2}\Omega_{i}^{(2,2)*}}, \qquad \Omega_{i}^{(2,2)*} = 1,157 T_{t-r,i}^{-0,1472}, \qquad T_{i} = \frac{k_{\rm B}T_{t-r}}{\varepsilon_{i}}$$
$$\varkappa_{i} = \frac{15}{4} \frac{\mathcal{R}}{W_{i}} \mu_{i} \Big(\frac{4}{15} \frac{\mathcal{R}}{W_{i}} C_{p,i}^{t-r} + \frac{1}{3}\Big),$$

где $k_{\rm B}$ — постоянная Больцмана; W_i — молекулярная масса компонента i ($i \in \{O_2, O\}$); $C_{p,i}^{t-r}$ — теплоемкость поступательно-вращательной моды при постоянном давлении. Для значений параметров, рассматриваемых в настоящей работе, динамическая вязкость изменялась в диапазоне от значения $\mu \approx 2,2 \cdot 10^{-5}$ Па \cdot с вблизи стенки и перед падающей УВ до $\mu \approx 1,7 \cdot 10^{-4}$ Па \cdot с за отраженной УВ. Коэффициенты диффузии рассчитывались по формуле [9]

$$D_i = \frac{1 - x_i}{\sum_{i \neq j} \frac{x_i}{D_{ij}}},$$

где

$$D_{ij} = 0,001\,88\,\frac{\sqrt{T_{t-r}^3(1/W_i + 1/W_j)}}{P\sigma_{ij}^2\Omega_{ij}^{(1,1)*}}, \quad \sigma_{ij} = \frac{1}{2}\,(\sigma_i + \sigma_j), \quad T_{ij} = \frac{k_{\rm B}T_{t-r}}{\varepsilon_{ij}}$$
$$\varepsilon_{ij} = \sqrt{\varepsilon_i\varepsilon_j}, \quad \Omega_{ij}^{(1,1)*} = 1,047\,T_{ij}^{-0,1604},$$

P — давление, атм. В расчетах использовались следующие значения: $\sigma_{\rm O_2}=3,458$ Å, $\sigma_{\rm O}=2,75$ Å, $\varepsilon_{\rm O_2}/k_{\rm B}=107,4$ K, $\varepsilon_{\rm O}/k_{\rm B}=80$ K.

Предполагается, что в смеси происходят две реакции диссоциации и две реакции рекомбинации: $O_2 + M \leftrightarrow O + O + M$ ($M \in \{O_2, O\}$). Скорости этих химических реакций рассчитываются по соотношениям

$$R_{l} = W_{l} \sum_{r=1}^{2} (\nu_{l,r}' - \nu_{l,r}'') (k_{f,r} C_{O_{2}} C_{M} - k_{b,r} C_{O} C_{O} C_{M}), \qquad l \in \{O_{2}, O\},$$
(2)

где суммирование проводится по реакциям (индекс r соответствует номеру химической реакции); $\nu'_{l,r}$, $\nu''_{l,r}$ — стехиометрические коэффициенты реагентов и продуктов химической реакции r; $k_{f,r}$ — двухтемпературная константа скорости диссоциации; $k_{b,r}$ — константа скорости рекомбинации; C_l — молярная концентрация компонента l. Для расчета двухтемпературной константы скорости диссоциации использовалось пять моделей: модель Парка [10], модель Кузнецова [11, 12], β -модель Лосева [13, 12], модель Мэрроуна — Тринора [14] с параметром U, модифицированным в [15], модель Мачерета — Фридмана [16].

Двухтемпературную константу скорости диссоциации $k_{f,r}$ в уравнении (2) можно представить в виде

$$k_{f,r}(T_{t-r}, T_v) = Z_r(T_{t-r}, T_v)k_{f,r}^0(T), \qquad k_{f,r}^0(T) = A_r T_{t-r}^b \exp\left(-\frac{E_d}{k_{\rm B} T_{t-r}}\right)$$

где $Z_r(T_{t-r}, T_v)$ — фактор неравновесности; T_v — колебательная температура компонента O_2 ; A_r , b — коэффициенты в законе Аррениуса, взятые из [2]. Заметим, что для реакции $O_2 + O \rightarrow 3O$ в [2] константа скорости реакции представлена не в аррениусовой форме, поэтому в настоящей работе использовалась аппроксимация этой константы из [3].

Для двухтемпературной модели Парка [10] фактор неравновесности $Z_r(T_{t-r}, T_v)$ записывается следующим образом:

$$Z_r(T_{t-r}, T_v) = (T_{t-r}^{s-1} T_v^{1-s})^b \exp\left[-\frac{E_d}{k_{\rm B}} \left(\frac{1}{T_{t-r}^s T_v^{1-s}} - \frac{1}{T_{t-r}}\right)\right].$$

Поскольку в настоящей работе s = 0,5, константа $k_{f,r}(T_{t-r}, T_v)$ записывается в соответствии с законом Аррениуса, в котором эффективная температура равна среднему геометрическому поступательной (статической) и колебательной температур.

Для двухтемпературной модели Кузнецова [11, 12] фактор неравнове
сности $Z_r(T_{t-r}, T_v)$ задается выражением

$$Z_r(T_{t-r}, T_v) = \frac{1 - \exp\left(-\theta_v/T_v\right)}{1 - \exp\left(-\theta_v/T_{t-r}\right)} \exp\left[E_v^*\left(\frac{1}{T_{t-r}} - \frac{1}{T_v}\right)\right],\tag{3}$$

где θ_v — характеристическая колебательная температура компонента O₂; $E_v^* = 0.7E_d/k_{\rm B}$ — параметр модели.

Для двухтемпературной β -модели [12, 13] фактор неравновесности $Z_r(T_{t-r}, T_v)$ записывается в соответствии с уравнением (3), а параметр E_v^* — в виде $E_v^* = E_d/k_{\rm B} - \beta T_{t-r}$ ($\beta = 1,5$ согласно [12]).

Для модели Тринора — Маррона [12, 14] фактор неравнове
сности $Z_r(T_{t-r},T_v)$ задается выражением

$$Z_r(T_{t-r}, T_v) = \frac{Q(T_{t-r}) Q(T_f)}{Q(T_v) Q(-U)},$$

где

$$Q(T_m) = \frac{1 - \exp\left(-\frac{E_d}{(T_m k_B)}\right)}{1 - \exp\left(\frac{\theta_v}{T_m}\right)}, \qquad T_f = \frac{1}{\frac{1}{1/T_v - \frac{1}{T_{t-r} - \frac{1}{U}}}$$

параметр модели U вычисляется согласно [12, 15]:

$$U = \begin{cases} \frac{T_{t-r}(\alpha T_{t-r} + (1-\alpha)T_v)}{(T_{t-r} - T_v)(1-\alpha)}, & T_{t-r} \neq T_v, \\ -T_{t-r}, & T_{t-r} = T_v, \end{cases} \qquad \alpha = \left(\frac{m_{\rm A}}{m_{\rm A} + m_{\rm M}}\right)^2,$$

 $m_{\rm A}$ — масса атома в диссоци
ирующей молекуле; $m_{\rm M}$ — масса атома в налетающей частице.

Для двухтемпературной модели Мачерета — Фридмана [16] фактор неравнове
сности $Z_r(T_{t-r}, T_v)$ находится из выражения

$$Z_{r}(T_{t-r}, T_{v}) = (1 - L) \frac{1 - \exp(-\theta_{v}/T_{v})}{1 - \exp(-\theta_{v}/T_{t-r})} \exp\left[-\frac{E_{d}}{k_{\rm B}}\left(\frac{1}{T_{v}} - \frac{1}{T_{t-r}}\right)\right] + L \exp\left[-\frac{E_{d}}{k_{\rm B}}\left(\frac{1}{T_{\alpha}} - \frac{1}{T_{t-r}}\right)\right],$$

где α определяется так же, как в модели Тринора — Маррона; $T_{\alpha} = \alpha T_v + (1 - \alpha)T_{t-r}$; параметр L вычисляется в зависимости от того, какие частицы сталкиваются:

$$L = \begin{cases} \frac{9\sqrt{\pi(1-\alpha)}}{64} \left(\frac{k_{\rm B}T_{t-r}}{E_d}\right)^{1-b} \left(1 + \frac{5(1-\alpha)k_{\rm B}T_{t-r}}{2E_d}\right), & O_2 + O \to O + O + O, \\ \frac{2(1-\alpha)}{\pi^2 \alpha^{3/4}} \left(\frac{k_{\rm B}T_{t-r}}{E_d}\right)^{1,5-b} \left(1 + \frac{7(1-\alpha)(1+\sqrt{\alpha})k_{\rm B}T_{t-r}}{2E_d}\right), & O_2 + O_2 \to O + O + O_2. \end{cases}$$

Константа скорости рекомбинации $k_{b,r}$ в уравнении (2) вычисляется по формуле $k_{b,r} = K_e(T)k_{f,r}(T_{t-r}, T_v)$, константа равновесия $K_e(T)$ определяется из выражения

$$K_{c}^{e}(T) = \frac{Z_{O_{2}}^{t} Z_{O_{2}}^{int}}{(Z_{O}^{t} Z_{O}^{int})^{2}} \exp\left(\frac{E_{d}}{k_{B} T_{t-r}}\right),$$

где $Z_l^t = 2\pi m_l k_{\rm B} T_{t-r}/h^2$ — поступательная статистическая сумма; h — постоянная Планка; $Z_l^{int} = g_l Z_l^{rot} Z_l^v$ — внутренняя статистическая сумма; $Z_l^{rot} = T_{t-r}/(\sigma \theta_{rot})$ — вращательная статистическая сумма; $Z_{\rm O_2}^v = \sum_{i=0}^{25} \exp\left(-\frac{i\theta_v}{T_{t-r}}\right)$ — колебательная статистическая сумма для Ω_2 . Для молекул кислорода характеристические вращательные и колебатель-

сумма для О₂. Для молекул кислорода характеристические вращательные и колебательные температуры равны $\theta_{rot} = 2,06$ K, $\theta_v = 2267,46$ K соответственно; фактор симметрии молекулы $\sigma = 2$, статистический вес основного электронного состояния $g_{O_2} = 3$. Для атомов кислорода, не обладающих вращательными и колебательными степенями свободы, выражение для внутренней статистической суммы упрощается: $Z_O^{int} = g_O = 9$. Скорость колебательно-поступательного обмен
а $\omega_{\rm O2}^{vib}$ находилась по формуле Ландау — Теллера [17]

$$\omega_{O_2}^{vib} = \frac{\rho_{O_2}(E_v^{O_2}(T_{t-r}) - E_v^{O_2}(T_v))}{\tau_{O_2}^{VT}}.$$

Время релаксации колебательно-поступательного (vibrational-translational (VT)) энергообмена $\tau_{O_2}^{VT}$ рассчитывалось по формуле Милликена — Уайта (MW) [18] с учетом высокотемпературной поправки Парка $\tau_{O_2}^{P}$ [10]:

$$\tau_{\mathcal{O}_2}^{\mathcal{VT}} = \sum_{l} \frac{x_l}{\tau_{\mathcal{O}_2,l}^{\mathcal{MW}}} + \tau_{\mathcal{O}_2,l}^{\mathcal{P}}, \quad \tau_{\mathcal{O}_2,l}^{\mathcal{MW}} = \frac{1}{P} \exp\left(A_{\mathcal{O}_2,l} T_{t-r}^{-1/3} + B_{\mathcal{O}_2,l}\right), \quad \tau_{\mathcal{O}_2}^{\mathcal{P}} = \frac{1}{n_{\mathcal{O}_2} C \sigma}$$

Здесь n_{O_2} — числовая плотность молекулярного кислорода O_2 ; остальные параметры вычислялись по формулам

$$A_{O_2,l} = 1,16 \cdot 10^{-3} \sqrt{m_{O_2,l}} \,\theta_v^{4/3}, \qquad B_{O_2,l} = -(1,74 \cdot 10^{-5} m_{O_2,l}^{3/4} \,\theta_v^{4/3} + 18,42),$$
$$m_{O_2,l} = \frac{W_{O_2} W_l}{W_{O_2} + W_l}, \quad C = \sqrt{\frac{8k_B T_{t-r}}{\pi \mu_{O_2}}}, \quad \mu_{O_2} = \frac{W_{O_2}}{N_A}, \qquad \sigma = \frac{2,5 \cdot 10^{-12}}{T_{t-r}^2}$$

(*N*_A — число Авогадро).

Колебательная энергия О2 рассчитывалась по модели гармонического осциллятора:

$$E_v^{O_2} = \frac{\theta_v \mathcal{R}/W_{O_2}}{\exp\left(\theta_v/T_v\right) - 1}$$

Скорость изменения колебательной энергии вследствие химических реакций $\omega_{{\rm O}_2}^{chem}$ вычислялась по формуле

$$\omega_{O_2}^{chem} = C_{dis} \sum_{r=1}^{2} (\nu_{O_2,r}' - \nu_{O_2,r}'') k_{f,r} C_{O_2} C_M - E_v^{O_2} \sum_{r=1}^{2} (\nu_{O_2,r}' - \nu_{O_2,r}'') k_{b,r} C_O C_O C_M,$$
(4)

где C_{dis} — параметр, определяющий количество колебательной энергии, теряемой модой O₂ при диссоциации. В настоящей работе рассматривались три случая: $C_{dis} = 0,3E_d$, $C_{dis} = 0,8E_d$ [19], $C_{dis} = E_v^{O_2}$ [10, 20] (E_d — энергия диссоциации O₂).

2. Численные методы. Система уравнений (1) решается численно в разработанном в Институте теоретической и прикладной механики СО РАН программном комплексе HyCFS, в котором используется конечно-объемный метод, при этом данные берутся в центре ячейки, когда контрольный объем совпадает с объемом ячеек. Комплекс HyCFS позволяет проводить расчеты на центральных и графических процессорных устройствах (ЦПУ и ГПУ), а также использовать их одновременно. При расчетах на нескольких ГПУ комплекс HyCFS использует многоуровневую параллелизацию. Расчетная область делится между всеми ГПУ таким образом, что каждое устройство проводит расчет только в своей области. За каждым ГПУ закрепляется центральный процессор. Передача данных между различными ГПУ осуществляется с помощью интерфейса передачи сообщений MPI между процессорами. Для расчетов только на ЦПУ расчетная область разбивается на подобласти, в которых вычисления выполняет ЦПУ. Передача данных происходит через MPI. Возможен также запуск задач на OpenMP. В настоящей работе все расчеты выполнены на одном ГПУ, поскольку при этом не требовалось больших вычислительных ресурсов.

Комплекс HyCFS использует структурированную одно- или многоблочную сетку, также возможен запуск задач на неструктурированной сетке (однако она совместима не со всеми математическими моделями). Сетки обоих типов допускают сгущение к необходимым участкам расчетной области. В настоящей работе использовалась одноблочная сетка без сгущения, обеспечивающая необходимое пространственное разрешение.

В HyCFS реализованы различные математические модели описания течений газа, основанные на континуальном подходе: модель совершенного газа (без учета процесса возбуждения колебательных мод молекул и химических реакций), однотемпературная модель течения химически реагирующей смеси (возбуждение внутренних мод учитывается в зависимости теплоемкости от температуры, а скорости химических реакций вычисляются по закону Аррениуса). Очевидно, что эти две модели не позволяют точно описать рассматриваемое течение, поэтому выбрана многотемпературная модель, позволяющая описывать течение газа более детально.

Используемые в комплексе HyCFS численные схемы основаны на численных схемах, представленных в работе [21], а разработанный в этой работе код является основой вычислительной части HyCFS. Для реконструкции примитивных переменных на грани контрольного объема могут использоваться MUSCL-реконструкции первого, второго, третьего и четвертого порядков. В настоящее время реализован один ограничитель наклона minmod. Для расчета невязких потоков могут использоваться различные приближенные римановские солверы: Poy, гибридный AUSM+van Leer, HLLE или HLLC. Также возможно использование схем WENO-5 пятого порядка. В настоящей работе для расчетов выбраны численные методы, наиболее близкие к традиционным численным методам, часто применяемым на практике.

Интегрирование по времени может быть выполнено с помощью различных схем. Явная схема Рунге — Кутты второго и третьего порядков может применяться для всех моделей. Для интегрирования уравнений, описывающих течение химически реагирующей смеси, можно использовать полунеявную схему ASIRK 2C (химические источниковые члены и источниковые члены с межмодовым энергообменом считаются жесткими). Для совершенного газа может использоваться полностью неявная схема DPLUR. В настоящей работе выбрана известная схема Рунге — Кутты второго порядка, в рассматриваемом случае не требующая очень малого шага по времени.

Комплекс HyCFS позволяет использовать различные типы граничных условий: сверхзвуковой вход и выход, дозвуковой вход с определением давления и температуры торможения, дозвуковой выход, при котором задается статическое давление газа, изотермическая или адиабатическая некаталитическая стенка с условием прилипания или непротекания. В настоящей работе для моделирования потока за падающей УВ на левой границе используется граничное условие сверхзвукового входа, когда задаются все переменные на границе. Для моделирования стенки используется изотермическая некаталитическая стенка с условием прилипания. Предполагается, что процесс отражения УВ происходит достаточно быстро и стенка не успевает нагреться до высоких температур. Также предполагается, что режим течения за отраженной волной является континуальным, поэтому применяется условие прилипания. Кроме того, в HyCFS реализовано условие некаталитичности.

Интегрирование по времени проводилось с помощью явной схемы Рунге — Кутты второго порядка, при этом расщепление по физическим процессам или какие-либо дополнительные промежуточные итерации, отличающиеся от явной схемы Рунге — Кутты второго порядка, не использовались. Реконструкция примитивных переменных ρ , $\rho_{\rm O}$, u, p, T_v на грани контрольного объема выполнялась с помощью стандартной процедуры MUSCL (monotonic upstream-centered scheme for conservation laws) и интерполяции второго порядка (при исследовании сходимости один расчет выполнен с интерполяцией третьего порядка). При реконструкции применяется ограничитель наклона minmod [22] для исключения нефизичных осцилляций численного решения. Потоки через грани контрольного

Рис. 1. Начальное распределение поступательной температуры T_{t-r} : 1 — область входа газа (x = 0), 2 — стенка (x = 8,3 м), 3 — разрыв в точке x = 0,1 м

Начальные условия перед и за падающей УВ

Случай	$u_{\Pi B}$, м/с	p_1 , Па	T_1, \mathbf{K}	$Y_{\rm O,1}$	u_1 , м/с	p_2 , Па	T_2, \mathbf{K}	$Y_{\mathrm{O},2}\cdot 10^2$	u_2 , м/с
100-8 100-6	$2760 \\ 2510$	$6,666 \\ 9,332$	296 296	000	0 0	$ \begin{array}{c} 600,2 \\ 685,3 \end{array} $	$2472 \\ 2388$	$^{8,74}_{5,21}$	$2482 \\ 2215$
100-1	2220	17,33	296	0	0	975,2	2245	$1,\!92$	1915

объема вычислялись с помощью приближенного римановского солвера HLLC (Harten-Laxvan Leer-contact) [23, 24]. Компоненты квазивектора вязких потоков F_v являются первыми производными, которые вычисляются на грани контрольного объема с использованием центральной разности второго порядка.

3. Процесс моделирования, начальные и граничные условия. Рассматривается одномерная область длиной 8,3 м (рис. 1). В начальный момент времени задается кусочнопостоянное распределение параметров с разрывом в точке с координатой x = 0,1 м. Слева от разрыва (при x < 0,1 м) задаются равновесные параметры за падающей УВ, движущейся со скоростью $u_{\Pi B}$, взятой из эксперимента [1]. На левой границе все задаваемые газодинамические параметры соответствуют условию равновесия за падающей УВ. Справа от разрыва (при x > 0,1 м) задаются параметры перед падающей УВ, взятые из [1]. На правой границе задаются граничные условия прилипания для некаталитической изотермической стенки с температуро
й $T_w=300~{\rm K}$ (для поступательной (статической) и колебательной температур $T_{t-r,w} = T_{v,w} = T_w$). Расчет начинается в момент времени t = 0. Далее падающая УВ отражается от правой стенки, отраженная УВ распространяется в противоположном направлении. В экспериментальной работе [1] представлены данные об изменении температуры T_v во времени на расстоянии 5 мм от стенки. Для сравнения с экспериментальными данными [1] в процессе расчета проводится запись значений T_v в центре ячейки, ближайшей к точке x = 8,295 м. Расчет заканчивается после момента времени, для которого известно последнее экспериментальное значение колебательной температуры.

В работе рассмотрено три случая, соответствующих экспериментам [1]. В таблице представлены значения параметров перед падающей УВ (индекс 1) и параметров за падающей УВ (индекс 2). Эти параметры являются равновесными, т. е. $T_{t-r,1} = T_{v,1} = T_1$,

Рис. 2. Распределения поступательной (статической) T_{t-r} (сплошные линии) и колебательной T_v (штриховые линии) температур в падающей и отраженной УВ, полученные по модели Кузнецова при $C_{dis} = 0.3E_d$ и числе ячеек 66 400: 1 — падающая УВ, 2 — отраженная УВ, 3, 3' — "хвост" падающей УВ до и после отражения соответственно; тонкая вертикальная линия — положение датчика; стрелка — направление движения падающей волны

 $T_{t-r,2} = T_{v,2} = T_2$. Обозначения случаев в таблице соответствуют обозначениям, принятым в [1].

4. Результаты расчетов. На рис. 2 показаны распределения поступательной (статической) и колебательной температур в падающей и отраженной УВ. Видно, что перед отражением падающей УВ от стенки (x = 8,3 м), в точке x = 8,295 м колебательная температура компонента О₂ увеличилась до значений порядка 800 К. Также видно, что далее вниз по потоку (в направлении увеличения x) температура T_v продолжает повышаться в "хвосте" падающей УВ. Отраженная от стенки УВ распространяется в направлении начала координат, и в точке x = 8,295 м температура T_v продолжает увеличиваться. Когда отраженная волна проходит через точку x = 8,295 м, скорость роста температуры T_v резко возрастает, что приводит к значительному изменению угла наклона кривой T_v .

На рис. 3 показана сходимость численного решения на последовательности измельчающихся сеток для случая 100-8 (см. таблицу) при использовании модели Кузнецова и значении параметра диссоциации $C_{dis} = 0.3E_d$. Во всех расчетах использовались равномерная сетка с числом ячеек от 8300 до 66 400 и MUSCL-реконструкция второго порядка (для сетки с числом ячеек 66 400 дополнительно выполнен расчет с MUSCL-реконструкцией третьего порядка).

На рис. 3, *а* видно, что при уменьшении размера ячеек пространственное распределение температур T_{t-r} и T_v фактически перестает изменяться, поэтому далее все расчеты проводились на сетке с числом ячеек 66 400 с использованием MUSCL-реконструкции второго порядка. На рис. 3, *а* также видно, что отраженная УВ распространяется по неравновесной части течения, оставшейся после падающей УВ ("хвост" падающей УВ). На стенке наблюдается пограничный слой толщиной более 5 мм, т. е. можно предположить, что вязкость и теплопроводность оказывают некоторое влияние на изменение колебательной температуры T_v во времени. Влияние вязкости в условиях рассматриваемого эксперимента, по-видимому, еще не исследовалось. В частности, в работе [25] моделирование проводилось

Рис. 3. Распределения поступательной (статической) температуры T_{t-r} (I) и колебательной температуры T_v (II) в момент времени t = 3,2 мс (a) и зависимость колебательной температуры от времени в точке x = 8,295 м (b), полученные по модели Кузнецова для случая 100-8 при $C_{dis} = 0,3E_d$, различном количестве ячеек в расчетной области или разном порядке MUSCL-реконструкции: 1-6 — расчет: 1-5 — с использованием MUSCL-реконструкции второго порядка (1 — "хвост" падающей УВ, 2 — сетка из 8300 ячеек, 3 — сетка из 16 600 ячеек, 4 — сетка из 33 200 ячеек, 5 — сетка из 66 400 ячеек), 6 — сетка из 66 400 ячеек с использованием MUSCL-реконструкции третьего порядка; 7 — эксперимент [1]; тонкая вертикальная линия — положение датчика (x = 8,295 м); стрелка — направление отраженной волны

без учета вязкости, поэтому можно предположить, что влияние вязкости незначительно по сравнению с влиянием химических реакций.

На рис. 3,6 показано изменение колебательной температуры T_v во времени в точке x = 8,295 м для различных сеток. Все расчетные кривые сдвинуты на одинаковую величину времени таким образом, чтобы увеличение T_v в отраженной УВ совпадало с увеличением T_v в эксперименте. При этом расчетные кривые относительно друг друга сдвинуты менее чем на 5 мкс. Сдвиг между сетками с числом ячеек 33 200 и 66 400 составляет менее 1 мкс, что значительно меньше времени измерений ($30 \div 50$ мкс). Сдвиг между расчетными кривыми обусловлен тем, что скорость отраженной волны зависит от разрешения сетки, а также тем, что изменение T_v во времени фиксируется в центрах ячеек, координаты которых различаются. В расчетах на всех сетках наблюдаются одинаковые увеличение колебательной температуры до максимального значения (пик) и последующее падение, поэтому дальнейшее измельчение сетки представляется нецелесообразным.

На рис. 4 представлены результаты расчетов изменения колебательной температуры T_v во времени с использованием различных моделей диссоциации, а также данные эксперимента [1]. Во всех случаях использовались значения параметра диссоциации $C_{dis} = 0.3E_d$; $E_v^{O_2}$. Кривые сдвинуты таким образом, чтобы рост колебательной температуры в отраженной УВ совпадал с экспериментальной восходящей ветвью. При $C_{dis} = E_v^{O_2}$ в целом результаты расчетов удовлетворительно согласуются с экспериментальными данными. При низких температурах расчеты при всех значениях двухтемпературных констант скоростей диссоциации дают близкие результаты, но при увеличении температуры (случай 100-8) различия результатов моделирования увеличиваются. При $C_{dis} = 0.3E_d$ различия

Рис. 4. Зависимость колебательной температуры T_v от времени в точке x = 8,295 м для различных случаев при использовании различных двухтемпературных моделей и значений параметра диссоциации:

a-в — $C_{dis} = E_v^{O_2}$, г-е — $C_{dis} = 0.3E_d$; а, г — случай 100-8, б, ∂ — случай 100-6, в, е — случай 100-1; 1-6 — расчет (1 — "хвост" падающей УВ, 2 — модель Парка, 3 — модель Кузнецова, 4 — β -модель, 5 — модель Мэрроуна — Тринора, 6 — модель Мачерета — Фридмана), 7 — экспериментальные данные [1]

Рис. 5. Зависимость колебательной температуры T_v от времени в точке x = 8,295 м для двух случаев при использовании различных моделей и значений параметра диссоциации:

а — случай 100-8, б — случай 100-6; 1–7 — расчет (1 — "хвост" падающей УВ, 2 — модель Парка ($C_{dis} = 0.3E_d$), 3 — модель Парка ($C_{dis} = 0.8E_d$), 4 — модель Парка ($C_{dis} = E_v^{O_2}$), 5 — модель Мачерета — Фридмана ($C_{dis} = 0.3E_d$), 6 — модель Мачерета — Фридмана ($C_{dis} = 0.8E_d$), 7 — модель Мачерета — Фридмана ($C_{dis} = E_v^{O_2}$)); 8 — экспериментальные данные [1]

результатов расчетов с использованием различных моделей увеличиваются по сравнению со случаем $C_{dis} = E_v^{O_2}$. При $C_{dis} = 0.3E_d$ наиболее близкие к экспериментальным данным результаты получены при использовании модели Мачерета — Фридмана.

В отличие от численных расчетов в экспериментах не было "хвоста" падающей УВ, т. е. временно́го интервала $\tau \approx -2 \div 0$ мкс. На рис. 4 видно, что ни одна из рассмотренных моделей даже качественно не описывает поведение экспериментальных данных для температуры T_v в диапазоне отрицательных значений τ .

Для исследования влияния скорости изменения колебательной энергии вследствие химических реакций $\omega_{O_2}^{chem}$ (уравнение (4)) на распределение во времени колебательной температуры были выбраны две модели — Парка и Мачерета — Фридмана — и три значения параметра диссоциации: $C_{dis} = 0.3E_d$; $0.8E_d$; $E_v^{O_2}$ (рис. 5). В случае использования модели Парка при увеличении C_{dis} до $0.8E_d$ численные и экспериментальные данные согласуются существенно хуже, при $C_{dis} = E_v^{O_2}$ численные распределения значительно ближе к экспериментальным данным. В случае использования модели Мачерета — Фридмана увеличение C_{dis} до $0.8E_d$ привело к занижению максимального значения колебательной температуры. Для случаев 100-8 и 100-6 использование $C_{dis} = 0.3E_d$. При $C_{dis} = E_v^{O_2}$ значения колебательной температуры существенно завышаются по сравнению с экспериментальными данными в случае 100-8 и практически совпадают в случае 100-6.

Экспериментальные распределения T_v получены для расстояния 5 мм от стенки, т. е. практически на границе пограничного слоя и основного течения. В этой области возможно влияние вязкости и теплопроводности на распределение T_v во времени. Для оценки этого влияния на рис. 6 приведены численные решения уравнений Навье — Стокса (уравне-

Рис. 6. Влияние вязкости, теплопроводности и диффузии на изменение колебательной температуры T_v во времени в точке x = 8,295 м при использовании модели Мачерета — Фридмана и различных значений C_{dis} , F_v в случае 100-8: 1-5 — расчет (1 — "хвост" падающей УВ, 2 — $C_{dis} = 0,3E_d$, $F_v \neq 0$, 3 — $C_{dis} = 0,8E_d$, $F_v \neq 0$, 4 — $C_{dis} = E_v^{O_2}$, $F_v \neq 0$, 5 — $C_{dis} = 0,3E_d$, $F_v = 0$); 6 — экспериментальные данные [1]

ние (1)) и Эйлера (уравнение (1) при $F_v = 0$). Видно, что на восходящей ветви в случае невязкого потока температура T_v увеличивается быстрее, чем в случае вязкого потока и в эксперименте. Однако на нисходящей ветви численные решения уравнений Эйлера и Навье — Стокса очень близки (кривые 2, 3, 5 на рис. 6). Такое поведение обусловлено тем, что на восходящей ветви УВ очень близка к стенке, и пики значений T_{t-r} и T_v находятся в пограничном слое на стенке, вследствие чего увеличиваются теплопотери в стенку (см., например, кривые 2 на рис. 2). На нисходящей ветви максимальные значения T_{t-r} и T_v находятся вне пограничного слоя и удаляются от стенки, а температура на расстоянии 5 мм от стенки падает, что приводит к уменьшению теплопотерь в стенку (см., например, пики температур на рис. 3, a). Таким образом, вязкость оказывает большее влияние на восходящем участке распределения T_v , чем на нисходящем.

Заключение. В работе проведен сравнительный анализ численных и экспериментальных данных, результаты которого показывают, что двухтемпературные модели диссоциации кислорода способны адекватно прогнозировать отражение УВ от стенки. Форма источникового члена, описывающего скорость изменения колебательной энергии вследствие химических реакций $\omega_{O_2}^{chem}$ (уравнение (4)), позволяет значительно изменить распределения колебательной температуры T_v . Фактически это свидетельствует о том, что при наличии в потоке химических реакций и неравновесного поступательно-колебательного энергообмена все источниковые члены должны быть согласованы между собой. Следующим этапом является построение и валидация согласованных математических моделей, одной из которых является модель Горбачева — Колесниченко [4].

Принципиальное различие численных и экспериментальных колебательных температур на начальном участке их роста наблюдается в области отрицательных значений времени τ на рис. 4 для всех рассмотренных моделей диссоциации и вариантов источникового члена $\omega_{O_2}^{chem}$. Результаты проведенных расчетов позволяют сделать вывод, что различия на данном временном промежутке не связаны с химической кинетикой. Для дальнейшего анализа расхождения численных и экспериментальных колебательных температур на начальном участке роста необходимы дополнительные исследования. Также результаты сравнения численных и экспериментальных [1] данных показали, что использование программного комплекса HyCFS позволяет с удовлетворительной точностью рассчитывать распределение колебательной температуры в отраженной волне. Наибольшее расхождение рассчитанной колебательной температуры с экспериментальными данными наблюдается за падающей ударной волной. При $C_{dis} = E_v^{O_2}$ практически все рассмотренные модели позволяют получить распределения, близкие к экспериментальным. При $C_{dis} = 0.3E_d$ оптимальным решением для рассмотренного диапазона параметров представляется модель Мачерета — Фридмана. Варьирование источникового члена, описывающего скорость изменения колебательной энергии вследствие химических реакций, оказывает существенное влияние на профиль колебательной температуры.

Авторы выражают благодарность О. В. Куновой за плодотворную дискуссию и обсуждение рассмотренной задачи.

ЛИТЕРАТУРА

- Streicher J. W., Krish A., Hanson R. K. Coupled vibration-dissociation time-histories and rate measurements in shock-heated, nondilute O₂ and O₂-Ar mixtures from 6000 to 14000 K // Phys. Fluids. 2021. V. 33, N 5. DOI: 10.1063/5.0048059.
- Ibraguimova L. B., Sergievskaya A. L., Levashov V. Yu., et al. Investigation of oxygen dissociation and vibrational relaxation at temperatures 4000–10800 K // J. Chem. Phys. 2013. V. 139, N 3. 034317. DOI: 10.1063/1.4813070.
- Wysong I., Gimelshein S., Bondar Ye., Ivanov M. Comparison of direct simulation Monte Carlo chemistry and vibrational models applied to oxygen shock measurements // Phys. Fluids. 2014. V. 26, N 4. 043101. DOI: 10.1063/1.4871023.
- Gorbachev Yu., Kunova O., Shoev G. A non-equilibrium dissociation and vibrational relaxation model for computational fluid dynamics simulations of flows with shock waves // Phys. Fluids. 2021. V. 33, N 12. 126105. DOI: 10.1063/5.0062628.
- Плотников М. Ю., Шкарупа Е. В. Численная оценка констант гетерогенных реакций при течении разреженного газа через цилиндрический канал // ПМТФ. 2017. Т. 58, № 3. С. 30–38. DOI: 10.15372/PMTF20170304.
- 6. Григорьев Ю. Н., Ершов И. В. Влияние колебательного возбуждения газа на положение зоны ламинарно-турбулентного перехода на пластине // ПМТФ. 2021. Т. 62, № 1. С. 14–21. DOI: 10.15372/PMTF20210102.
- Kudryavtsev A. N., Kashkovsky A. V., Borisov S. P., Shershnev A. A. A numerical code for the simulation of non-equilibrium chemically reacting flows on hybrid CPU-GPU clusters // AIP Conf. Proc. 2017. V. 1893, iss. 1. 030054. DOI: 10.1063/1.5007512.
- Wilke C. A viscosity equation for gas mixtures // J. Chem. Phys. 1950. V. 18, iss. 4. P. 517–519. DOI: 10.1063/1.1747673.
- Hirschfelder J. O. Molecular theory of gases and liquids / J. O. Hirschfelder, C. F. Curtiss, R. B. Bird. N. Y.: Wiley, 1954.
- 10. **Park C.** Nonequilibrium hypersonic aerothermodynamics. N. Y.; Chichester; Brisbane; Toronto; Singapore: John Wiley and Sons, 1990.
- 11. Кузнецов Н. М. Кинетика мономолекулярных реакций. М.: Наука, 1982.
- Физико-химические процессы в газовой динамике: Компьютеризир. справ.: В 3 т. Т. 1. Динамика физико-химических процессов в газе и плазме / Под ред. Г. Г. Черного, С. А. Лосева. М.: Изд-во Моск. гос. ун-та, 1995.

- 13. Лосев С. А., Генералов Н. А. К исследованию возбуждения колебаний и распада молекул кислорода при высоких температурах // Докл. АН СССР. 1961. Т. 141, № 5. С. 1072–1075.
- 14. Marrone P., Treanor C. Chemical relaxation with preferential dissociation from excited vibrational levels // Phys. Fluids. 1963. V. 6, N 9. P. 1215–1221.
- 15. Лосев С. А., Сергиевская А. Л., Русанов В. Д. и др. Фактор неравновесности в двухтемпературной кинетике диссоциации за фронтом ударной волны // Докл. АН. 1996. Т. 346, № 2. С. 192–196.
- Macheret S., Fridman A., Adamovich I., et al. Mechanisms of nonequilibrium dissociation of diatomic molecules. Williamsville, 1994. (Paper / AIAA; N 94-1984). DOI: 10.2514/6.1994-1984.
- 17. Ландау Л., Теллер Э. К теории дисперсии звука // Phys. Z. Sowjet. 1936. Bd 10. S. 34-43.
- Millikan R. C., White D. R. Systematics of vibrational relaxation // J. Chem. Phys. 1963. V. 39, N 12. P. 3209–3213. DOI: 10.1063/1.1734182.
- 19. Gnoffo P. A., Gupta R. N., Shinn J. L. Conservation equations and physical models for hypersonic air flow in thermal and chemical non-equilibrium. S. l., 1989. (Paper / NASA; N 2867).
- 20. Nagnibeda E. Non-equilibrium reacting gas flows / E. Nagnibeda, E. Kustova. Berlin; Heidelberg: Springer, 2009.
- 21. **Кудрявцев А. Н.** Вычислительная аэродинамика сверхзвуковых течений с сильными ударными волнами: Дис. ... д-ра физ.-мат. наук. Новосибирск, 2014.
- 22. Yee H. C. A class of high-resolution explicit and implicit shock-capturing methods: Tech. memorandum / NASA. N 101088. S. l., 1989.
- Toro E. F., Spruce M., Speares W. Restoration of the contact surface in the HLL-Riemann solver // Shock Waves. 1994. V. 4, N 1. P. 25–34. DOI: 10.1007/BF01414629.
- Batten P., Leschziner M. A., Goldberg U. C. Average-state jacobians and implicit methods for compressible viscous and turbulent flows // J. Comput. Phys. 1997. V. 137, N 1. P. 38–78. DOI: 10.1006/jcph.1997.5793.
- 25. Кравченко Д. С., Кустова Е. В., Мельник М. Ю. Моделирование поуровневой кинетики кислорода за отраженными ударными волнами // Вестн. С.-Петерб. гос ун-та. Математика. Механика. Астрономия. 2022. Т. 9, вып. 3. С. 426–439.

Поступила в редакцию 4/VIII 2022 г., после доработки — 24/X 2022 г. Принята к публикации 27/X 2022 г.