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Исследованы упругие свойства образцов доломита и известняка вмещающих пород на ме-
сторождении алмазов “Ботуобинская трубка” в условиях частичного водонасыщения. Прове-
дены три цикла испытаний предварительно насыщенных образцов в процессе их естествен-
ного высыхания в комнатных условиях. Установлены закономерности изменения модуля 
упругости исследованных материалов в зависимости от содержания воды при различных ре-
жимах предварительного насыщения и сделан вывод о том, что сложившиеся представления 
об общих закономерностях влияния воды на механические свойства горных пород справед-
ливы только для стационарного состояния и нарушаются в нестационарном, когда влага не-
равномерно распределена в поровом пространстве материала. 

Доломит, известняк, содержание воды, режимы водонасыщения, одноосное сжатие, модуль 
упругости, коэффициент Пуассона 

DOI: 10.15372/FTPRPI20240102 
EDN: HCGPGT 

 

Среди множества факторов, влияющих на прочность и деформируемость горных пород, та-
ких как минеральный состав, текстура, пористость, плотность, большую роль играет содержа-
ние в них воды [1 – 3]. Присутствие влаги приводит к ослаблению породы, т. е. к деградации, 
снижению прочностных и деформационных характеристик, так называемому water-weakening 
effect [4, 5]. Связанное с этим разрушение горных пород может вызвать различные поврежде-
ния инженерных конструкций и геологические катастрофы, в частности оползни, деформации 
оснований плотин, карстовые обвалы, сбросы шахтных вод, а также человеческие жертвы и се-
рьезные экономические потери [5 – 7]. 

Несмотря на то, что изучение влияния содержания воды на механические свойства горных 
пород имеет давнюю историю [8 – 11], эта тема актуальна и в настоящее временя. Объектом ис-
следований служат породы различного типа и происхождения: песчаники [5, 7, 12 – 19], глини-
стые породы [20 – 25], карбонатные породы [18, 26, 27], туф [28], гранит [5], мрамор [5], при-
родный гипс [18]. Природа явления достаточно сложна и до конца не изучена ввиду большого 
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разнообразия горных пород и механизмов (химических, физических, механических) взаимо-
действия вещества с водой. Для одних пород преобладающими могут быть одни механизмы, 
для других — совершенно другие [5, 24, 27 – 32]. По этой причине какое-то простое, универ-
сальное объяснение этому эффекту вряд ли возможно. 

Изучение ослабляющего действия воды предполагает сравнение прочностных и деформа-
ционных характеристик, полученных на образцах, испытанных в сухом и насыщенном состоя-
нии. Снижение прочности горных пород по разным данным составляет 2 – 90 % [4], что связано 
с большим их разнообразием. Единых стандартных методов оценки water-weakening effect 
не существует. В большинстве работ исследования влияния влажности на механические свой-
ства горных пород ограничиваются изучением свойств образцов в сухом и насыщенном состо-
янии. Однако для оценки степени их деградации, с целью обеспечения безопасности ведения 
горных работ, важно знать, как сильно изменяются свойства при низких и умеренных уровнях 
водонасыщения. Меньшее число работ посвящено изучению свойств горных пород в промежу-
точных (между сухим и насыщенном) состояниях, т. е. при частичном насыщении. Необходимо 
учитывать, что испытания в различных состояниях проводятся на разных образцах, а двух об-
разцов горной породы идентичного состава, структуры и обладающих одинаковыми свойства-
ми не существует. На результаты испытаний накладываются погрешности, связанные с изме-
нением свойств от образца к образцу, и уменьшить эти погрешности просто за счет увеличения 
количества испытанных образцов вряд ли возможно. 

Другой важный момент заключается в том, что промежуточные состояния с заданным уров-
нем содержания влаги могут быть достигнуты разными способами. В большинстве исследова-
ний заданная влажность достигалась путем прямого насыщения образца из сухого состояния. 
При этом в разных работах образцы предварительно высушивали либо в печи, либо на воздухе. 
Способы достижения заданной влажности или степени насыщения также разнообразны: это 
полное погружение образца в ванну с водой при обычных условиях, частичное погружение об-
разца в сосуд с водой с постепенным увеличением уровня воды по мере ее всасывания, насыще-
ние в эксикаторе или в климатической камере с контролируемым уровнем относительной влаж-
ности воздуха, насыщение в вакуумной камере. Кроме того, заданное содержание влаги может 
быть достигнуто и обратным путем: при высушивании предварительно насыщенного образца. 
По сути, в каждой работе используется собственная методика подготовки образцов и проведе-
ния испытаний, что сильно усложняет сопоставление результатов разных авторов. 

Если попытаться обобщить результаты многочисленных экспериментальных исследований, 
можно сделать следующие выводы относительно общих закономерностей поведения горных 
пород во влажном состоянии: 

1) прочностные и деформационные свойства горных пород однозначно определяются ко-
личеством содержащейся в них воды, т. е. прочность и деформируемость образца горной поро-
ды зависят от количества содержащейся воды и не зависят от распределения воды по образцу, 
а также от способа, которым заданная влажность достигнута; 

2) пределы прочности и модули упругости горной породы монотонно убывают с увеличе-
нием содержания воды. 

В большинстве работ влияние содержания воды исследовалось в стационарном состоя-
нии, когда влага равномерно распределена по образцу. Если условия эксперимента позволя-
ли, то о достижении стационарного состояния судили по существенному снижению скорости 
водонасыщения. Что касается снижения пределов прочности и модулей упругости с увеличе-
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нием содержания воды, то для аналитического описания этого явления предложены различ-
ные феноменологические формулы, чаще всего отрицательно-степенные или отрицательно-
экспоненциальные зависимости [4]. Отмечалось быстрое снижение прочности и модуля упру-
гости породы с увеличением содержания воды при низких уровнях насыщения и незначитель-
ное их уменьшение с увеличением содержания воды при высоких уровнях насыщения. 

В последнее время появились публикации [33 – 36], в которых получены результаты, вы-
ходящие за рамки сформулированных выше представлений об общих закономерностях влия-
ния воды на механические свойства горных пород. Главный вопрос состоит в том, действи-
тельно ли прочностные и деформационные свойства горных пород являются однозначной 
функцией количества воды, содержащейся в них, и не зависят от распределения воды в поро-
де или времени выдержки в воде? Речь идет о деградации механических свойств, которая 
во многих случаях — необратимый процесс, а это входит в противоречие с постулатом 
об однозначности. Но даже если рассматривать обратимые упругие деформации пористой 
структурно-неоднородной среды, ее интегральные свойства будут определяться характером 
неоднородного распределения свойств по объему. 

Также следует отметить, что этот вопрос имеет большое практическое значение для оценки 
устойчивости и длительной прочности обводненных горных выработок. Только нетронутый 
массив на удалении от поверхности и водопритоков можно считать находящимся в стационар-
ном состоянии и характеризующимся определенной влажностью. В результате ведения горных 
работ, обнажения поверхностей массива, затопления и осушения выработок распределение во-
ды в целиках и приповерхностных областях оказывается весьма неравномерным и вопрос о не-
сущей способности целиков и устойчивости откосов приобретает еще большую актуальность. 

Представленные в [33 – 36] результаты свидетельствуют о том, что влияние воды на меха-
нические свойства горных пород в состоянии частичного насыщения и в условиях неравномер-
ного распределения влаги имеет существенные особенности и требует дальнейшего изучения. 
Для объяснения обнаруженного ранее нетипичного поведения упругих свойств горных пород 
выдвинута гипотеза [35] о появлении при высоких степенях водонасыщения большого количе-
ства заполненных водой пор, играющих роль жестких включений в твердом теле, что приводит 
к увеличению его упругих модулей. Возникает закономерный вопрос, влияют ли условия 
и степень водонасыщения на поведение упругих свойств в зависимости от количества влаги 
в образце? Другими словами, в какой степени предложенный механизм увеличения упругих 
модулей горной породы проявляется при частичном насыщении образца влагой, когда опреде-
ленная часть пор остается незаполненной водой или заполненной частично. 

МЕТОДЫ ИССЛЕДОВАНИЯ 

Для ответа на поставленный вопрос целесообразно разбить его на две части и сформулиро-
вать две задачи для экспериментального исследования. Во-первых, как влияет степень началь-
ного насыщения влагой на характер изменения упругих свойств, и, во-вторых, влияют ли усло-
вия достижения определенной степени водонасыщения на характер изменения свойств? По-
скольку условия водонасыщения могут быть самые разнообразные, получить исчерпывающие 
ответы на ограниченном экспериментальном материале вряд ли возможно. Тем не менее 
на начальном этапе выбраны следующие, наиболее простые способы насыщения: 

1) замачивание образца в течение определенного времени, при котором полное насыщение 
не достигается, с последующим испытанием образца в процессе высыхания (варьируемый  
параметр — время насыщения образца); 
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2) замачивание образца в течение фиксированного времени, с последующей гидроизоляци-
ей образца и выдержкой в течение определенного времени перед испытанием (варьируемый 
параметр — время выдержки образца). 

Конкретные режимы насыщения выбирались исходя из предварительно построенных пол-
ных диаграмм водонасыщения и водопотери (при естественном высыхании образца в комнат-
ных условиях). После насыщения на образец устанавливали экстензометры (продольный экс-
тензометр 3542RA и поперечный диаметральный экстензометр 3975 фирмы Epsilon) и поме-
щали образец на испытательную машину UTS 250 (рис. 1). Испытания проводили в процессе 
естественного высыхания образца через определенные промежутки времени, и по диаграм-
мам деформирования рассчитывали модули упругости и коэффициенты Пуассона согласно 
СТО 05282612-001-2013 [37]. Цикл испытаний одного образца составлял 12 сут. В течение это-
го времени образец с установленными экстензометрами оставался на машине. 

 

Рис. 1. Образец с экстензометрами, установленный на испытательной машине UTS 250 

Действующий ГОСТ 28985-91 [38] не отвечает поставленной задаче. Его основной недо-
статок состоит в необходимости нагружения образца до уровня внутренних напряжений, при-
водящих к необратимым структурным изменениям, накоплению повреждений, микротрещин, 
изменению структуры порового пространства, что ведет к изменению физико-механических 
свойств. 

Из-за необратимых структурных изменений невозможно повторное испытание образца. 
Это не позволяет проследить за изменением упругих характеристик материала вследствие из-
менения его влажности, пришлось бы испытывать разные образцы, увлажненные до различно-
го уровня водонасыщения. Такое исследование трудоемко, поскольку связано с изготовлением 
и испытанием большого количества образцов. Опираясь на статистический анализ достоверно-
сти полученных результатов, можно судить о свойствах материала в контрастных (воздушно-
сухом и водонасыщенном) состояниях. Для корректного определения свойств материала испы-
тания образца проводили в диапазоне нагрузок, исключающих образование и накопление 
структурных изменений (повреждений) в материале. После завершения цикла испытаний обра-
зец помещали в температурную камеру и выдерживали при 60 °С в течение времени, необхо-
димого для достижения исходного воздушно-сухого состояния. Достижение воздушно-сухого 
состояния контролировали, измеряя массу образца и проводя контрольные деформационные 
испытания. После этого выполняли новый цикл испытаний. 
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РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 

Объект исследования — образцы доломита и известняка, представляющие вмещающие по-
роды на месторождении алмазов “Ботуобинская трубка”. Призматические образцы размером 
150 × 50 × 50 мм изготавливались из керна контрольно-стволовой скважины КСС-2. Диаграммы 
водонасыщения и водопотери образцов приведены на рис. 2. Выбраны три режима водонасы-
щения с последующим испытанием по мере высыхания образца в течение 12 сут: замачивание 
в течение 3 сут; замачивание в течение 3 ч; замачивание в течение 3 ч плюс выдержка в тече-
ние 6 сут и 21 ч. За время испытания образец терял значительную часть накопленной 
при насыщении влаги, в результате чего можно было ожидать стабилизации его свойств. 

 
Рис. 2. Диаграмма водонасыщения (а, в) и водопотери (б, г) образцов доломита и известняка 

В третьем режиме водонасыщения образец после замачивания заворачивали в полиэтилено-
вую пленку и помещали в эксикатор. Для каждого режима водонасыщения строили диаграммы 
водопотери образцов, измеряя их массу в процессе высыхания при комнатной температуре 
(рис. 3). Для всех режимов насыщения наблюдалась стабилизация массы образца после 12 сут 
сушки, при том что воздушно-сухое состояние достигалось только после трехчасового замачива-
ния (режим 2). После насыщения в режимах 1 и 3 вода более равномерно распределялась по об-
разцу, небольшая ее часть еще длительное время сохранялась во внутренних областях образца. 

 
Рис. 3. Изменение массы образца доломита (а) и известняка (б) в процессе сушки после насы-
щения в режимах 1 – 3. Штриховые линии — масса образцов в воздушно-сухом состоянии 
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На рис. 4 приведены результаты определения модуля упругости и коэффициента Пуассона 
в процессе высыхания образцов после насыщения. 

 
Рис. 4. Зависимость модуля Юнга и коэффициента Пуассона образца доломита (а, б) и известня-
ка (в, г) от времени сушки для режимов 1 – 3. Штриховые линии — модули упругости и коэффи-
циенты Пуассона образцов в воздушно-сухом состоянии 

Полученные данные не позволяют сделать определенные выводы относительно характера 
поведения коэффициента Пуассона. Изменения его по мере высыхания образца доломита после 
насыщения в режимах 2 и 3 носят немонотонный характер и могут быть связаны как с влияни-
ем миграции влаги, структурными особенностями материала, так и с погрешностями экспери-
мента. Изменения коэффициента Пуассона образца известняка в процессе сушки очень незна-
чительны для всех режимов насыщения и находятся в пределах погрешности измерений. 
Для надежного выявления закономерностей поведения данного коэффициента необходимы  
дополнительные исследования. 

В отличие от массы образца, стабилизации модуля упругости материала после 12 сут суш-
ки не происходит. В большей степени это относится к образцу доломита и в меньшей — к об-
разцу известняка. Это означает, что упругие свойства материала и количество воды в образце 
в процессе сушки изменяются непропорционально. Образец теряет влагу гораздо быстрее, 
чем происходит восстановление его упругих свойств. 

На рис. 5 представлены результаты экспериментального определения модуля упругости 
(точки) вместе с расчетами его ожидаемого изменения (кривые) в предположении пропорцио-
нальной зависимости от содержания влаги. 
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Рис. 5. Зависимость модуля Юнга образца доломита от времени сушки для режима 1 (а), 2 (б), 3 (в)  
и известняка для режима 1 (г), 2 (д), 3 (е) 

По сути, “запаздывание” восстановления упругих свойств при высыхании образца горной 
породы является подтверждением известного экспериментального факта: быстрое снижение 
прочности и модуля упругости породы с увеличением содержания воды при низких уровнях 
насыщения и незначительное их уменьшение с увеличением содержания воды при высоких 
уровнях насыщения. Это хорошо видно на зависимостях модуля Юнга доломита от количества 
избыточной (относительно воздушно-сухого состояния) воды в образце в процессе его сушки 
после предварительного насыщения в режимах 1 и 3 (рис. 6). 

 
Рис. 6. Зависимость модуля Юнга образца доломита от содержания воды для режимов 1 – 3 
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После трехчасового замачивания и последующей длительной выдержки (режим 3) и после 
замачивания в течение 3 сут (режим 1) вода распределялась в образце доломита достаточно 
равномерно, зависимости модуля упругости от содержания воды для этих режимов насыщения 
близки и соответствуют общепринятым представлениям. Однако в процессе кратковременного 
трехчасового замачивания без последующей выдержки (режим 2) вода не успевала распреде-
литься по всему объему и была сосредоточена преимущественно во внешней области образца. 
В этом случае поведение модуля упругости в зависимости от содержания воды носит немоно-
тонный характер и входит в противоречие с постулатами об однозначности и монотонности. 

Эти результаты, а также данные [35] свидетельствует о происходящих в материале разно-
направленных физических процессах, связанных с присутствием влаги в образце. С одной сто-
роны, находящаяся в порах вода взаимодействует с минеральным скелетом горной породы, что 
приводит к уменьшению его жесткости — материал размягчается. Независимо от конкретного 
механизма такого взаимодействия оно, очевидно, осуществляется через поверхность пор 
и поэтому наиболее эффективно при низких уровнях водонасыщения. По мере заполнения по-
ры водой эффективность воздействия влаги на минеральный скелет снижается, поскольку 
в этом процессе не участвует часть воды, находящаяся во внутренних областях поры. В резуль-
тате наблюдается значительное уменьшение модуля упругости породы при низких уровнях 
насыщения и его слабое изменение при высоких уровнях насыщения. При высыхании образец 
теряет эту воду в первую очередь, поэтому в начале процесса сушки наблюдается слабое изме-
нение модуля упругости породы. Степень снижения эффективности воздействия влаги опреде-
ляется, в том числе, свойствами минерального скелета и формой поры. 

С другой стороны, заполненная водой пора препятствует деформации материала, что при-
водит к увеличению его жесткости. Причем изменение жесткости самой поры носит выражен-
ный нелинейный, близкий к сингулярному характер. Пока пора не заполнена водой полностью, 
ее жесткость равна нулю. При полном заполнении водой объемная жесткость поры быстро 
возрастает и, если ее сообщение с другими порами затруднено, объемная жесткость стремится 
к неограниченно высокому значению ввиду свойства несжимаемости жидкости. В таком состо-
янии заполненная водой пора представляет собой деформируемое жесткое включение в упру-
гом скелете горной породы. В отличие от недеформируемых твердых включений, пора дефор-
мируется без изменения объема и характеризуется определенным поровым давлением, завися-
щим от формы поры и условий нагружения. Появление в материале при высоких степенях во-
донасыщения большого количества жестких включений приводит к увеличению его упругих 
модулей, и при определенных условиях эта тенденция может оказаться преобладающей. Такая 
ситуация наблюдалась в течение первых суток сушки образца доломита после его насыщения 
в режиме 2. В это время образец терял воду преимущественно из внутренних областей пор, 
уменьшая их жесткость, что приводило к снижению модуля упругости. После насыщения 
в режимах 1 и 3 вода более равномерно распределялась в поровом пространстве, количество 
жестких пор было незначительно, и они не могли оказать существенного влияния на процесс 
восстановления упругих свойств. 

На рис. 7 показаны зависимости модуля Юнга от количества избыточной воды для образца 
известняка. После насыщения в режиме 2 образец известняка поглощает незначительное коли-
чество воды, и хотя в первые 3 – 4 сут сушки теряет воду гораздо быстрее, чем происходит вос-
становление упругих свойств (рис. 5д), в дальнейшем его свойства стабилизируются. В резуль-
тате представленная на рис. 7 зависимость имеет вид, близкий к общепринятому. 
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Рис. 7. Зависимость модуля Юнга образца известняка от содержания воды для режимов 1 – 3 

ВЫВОДЫ 

Обнаружен эффект “запаздывания” восстановления упругих свойств при высыхании пред-
варительно насыщенного образца горной породы. Образец теряет влагу гораздо быстрее, чем 
происходит восстановление его упругих свойств. Возможная причина такого поведения — вза-
имодействие воды с минеральным скелетом горной породы осуществляется через поверхность 
пор и наиболее эффективно при низких уровнях водонасыщения. По мере заполнения поры во-
дой эффективность воздействия влаги на минеральный скелет снижается. При высыхании об-
разец теряет воду, находящуюся во внутренних областях поры, поэтому в начале процесса 
сушки наблюдается слабое изменение модуля упругости породы. 

При предварительном водонасыщении обнаружено немонотонное поведение модуля упру-
гости в процессе высыхания образца доломита, что свидетельствует о происходящих в матери-
але разнонаправленных физических процессах, связанных с присутствием влаги в образце. 
Находящаяся в порах вода взаимодействует с минеральным скелетом горной породы, что 
уменьшает его жесткость (water-weakening effect). Заполненная водой пора препятствует де-
формации материала и увеличивает его жесткость. Появление в материале большого количе-
ства жестких включений приводит к увеличению его упругих модулей, и при определенных 
условиях эта тенденция может оказаться преобладающей. Такое поведение характеризуется как 
water-hardening effect. 

Сложившиеся представления об общих закономерностях влияния воды на механические 
свойства горных пород справедливы только для стационарного состояния и нарушаются в не-
стационарном, когда влага неравномерно распределена в поровом пространстве материала. 
Деформационные свойства характеризуются усредненными по объему значениями упругих 
модулей, которые зависят от времени выдержки и характера распределения воды в образце. 
В этих условиях средние упругие модули уже не являются монотонными и однозначными 
функциями содержания воды в образце, что подтверждается полученными результатами экспе-
римента. 
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