2015. Том 56, № 3

Май – июнь

C. 582 – 590

УДК 541.6:541.49:546.74

ЭЛЕКТРОННОЕ СТРОЕНИЕ НА ОСНОВАНИИ УЛЬТРАФИОЛЕТОВЫХ ФОТОЭЛЕКТРОННЫХ СПЕКТРОВ И ТЕОРИИ ФУНКЦИОНАЛА ПЛОТНОСТИ АЗОТСОДЕРЖАЩИХ ВНУТРИКОМПЛЕКСНЫХ СОЕДИНЕНИЙ НИКЕЛЯ(II)

А.А. Комиссаров, В.В. Короченцев, В.И. Вовна

Дальневосточный федеральный университет, Владивосток, Россия E-mail: vovna.vi@dvfu.ru

Статья поступила 15 января 2014 г.

Исследована электронная структура бис-ацетилацетоимината и этилен-бис-ацетилацетоимината никеля(II) методом теории функционала плотности. На основании квантовохимических расчетов в приближении теоремы Купманса выполнено отнесение полос газофазных спектров исследованных комплексов. Установлено влияние аминозамещения ацетилацетоната никеля на характер связи лигандов с комплексообразователем.

DOI: 10.15372/JSC20150323

Ключевые слова: ацетилацетоиминат никеля, фотоэлектронные спектры, теория функционала плотности, электронная структура, дефект Купманса.

введение

Внутрикомплексные соединения переходных *d*-металлов с β-дикетонатными лигандами представляют особый интерес из-за своих физико-химических свойств и широкой применимости [1]: их адсорбции на металлических поверхностях, кластерах, на биологических молекулах [2]; возможности использования в качестве медиаторов и катализаторов в полимеризации олефинов [3, 4]; сложной природы связывания металл—лиганд [5, 6]; применимости в промышленности [7] и т.п. Так как большинство физико-химических свойств соединений определяется природой их электронной структуры, для глубокого и детального исследования этих свойств важно изучить электронное строение соединений, в частности, структуру валентных орбиталей. Высокоинформативным способом изучения электронного строения является комбинация методов квантово-химического моделирования и ультрафиолетовой фотоэлектронной спектроскопии.

Из-за высокой плотности электронных состояний в валентной зоне и низкой структурированности отдельных полос ультрафиолетовых фотоэлектронных спектров хелатных комплексов 3*d*-металлов представляет собой сложную задачу.

Ультрафиолетовые фотоэлектронные спектры, полученные с источником излучения HeI, опубликованы нами в работы [8].

Успешное применение метода интерпретации фотоэлектронных спектров, проведенное с помощью квантово-химического моделирования применительно к бис-ацетилацетонату никеля(II) (Ni(acac)₂) в работе [9], дает основания провести исследование области валентных орбиталей бис-ацетилацетоимината и этилен-бис-ацетилацетоимината никеля(II) (Ni(Acim)₂ и NiEcim соответственно) с использованием метода теории функционала плотности.

[©] Комиссаров А.А., Короченцев В.В., Вовна В.И., 2015

Целью данной работы является изучение электронной структуры комплексов Ni(Acim)₂ и NiEcim и отнесение полос ультрафиолетовых фотоэлектронных спектров данных соединений с результатами расчетов.

МЕТОДИКА РАСЧЕТА

Квантово-химическое моделирование выполнено с использованием пакетов программ GAMESS-US [10] и Firefly 7.1.G-8.0.0 [11] — модифицированной версии GAMESS-US. Для оптимизации геометрии комплексов и для получения энергетических характеристик молекулярных уровней применен метод теории функционала плотности (ТФП), позволяющий при оптимальном выборе функционала и базиса волновых функций добиться результатов того же уровня, что и в более совершенных методах, но со значительной экономией расчетных ресурсов и времени. Выбор функционала обусловлен оптимальным сочетанием качества описания свойств хелатных комплексов переходных металлов и скорости выполнения расчетов [3—7, 12, 13] и обоснован работами [1, 9], поэтому в методе ТФП использован гибридный обменно-корреляционный функционал B3LYP.

В качестве базисного набора волновых функций был выбран базисный набор Попла 6-31G(d,p) для предварительной оптимизации геометрии соединений и базисный набор Ахлричса def2-TZVPP для окончательной оптимизации геометрии и вычисления энергетических характеристик. Разделение процедуры оптимизации на предварительную и окончательную позволило сократить общее время, затраченное на квантово-химическое моделирование.

Выбор базиса def2-TZVPP, включающего поляризационные функции [14—16], для расчета β-дикетонатных комплексов металлов обоснован нами ранее в [9]. С целью проверки соответствия рассчитанных оптимизированных структур точкам локального минимума на поверхности потенциальной энергии для всех соединений проводили расчет матрицы Гессе.

Отнесение рассчитанных энергий орбиталей Кона—Шема к экспериментальным значениям вертикальных энергий ионизации (ЭИ) выполнено в приближении расширенной теоремы Купманса $\Im H_{\text{B}}(i) = -\varepsilon(i) + \delta(i)$ [17, 18], позволяющей при учете зависимости дефекта Купманса $\delta(i)$ от характера электронного уровня получить соответствие расчетных энергий $\varepsilon(i)$ экспериментальным энергиям ионизации (ЭИ) [8, 19, 20].

Для установления влияния металла на молекулярные орбитали лигандов были рассчитаны комплексы с замороженной геометрией с заменой никеля на атом водорода.

РЕЗУЛЬТАТЫ

Квантово-химическое моделирование показало наличие двух равновесных конформаций бис-ацетилацетоимината никеля в *транс-* и *цис*-формах. Сравнение расчетных полных энергий обеих структур показало, что более оптимальной является *транс*-конформация комплекса, однако различие в полной энергии между *транс-* и *цис*-конформациями составляет лишь 0,22 эВ, что лежит в пределах ошибки расчета. По этой причине не представляется возможным однозначно определить оптимальную равновесную конформацию бис-ацетилацетоимината никеля исходя только из расчетных данных. Кроме того, рассмотрение *цис*-конформации Ni(Acim)₂ наряду с *транс*-конформацией позволяет изучить изменения в валентной области этилен-бисацетилацетоимината никеля, представляющего собой соединение никеля с двумя ацетилацето-иминами, соединенными между собой этиленовым мостиком, связанным с атомами азота.

За отправную точку изучения электронной структуры и анализа валентной области фотоэлектронных спектров Ni(Acim)₂ и NiEcim были взяты полученные нами ранее расчетные и экспериментальные данные комплекса ацетилацетоната никеля(II) (Ni(Acac)₂) [9]. Квантовохимическое моделирование комплекса Ni(Acac)₂ в [9] было проведено тем же методом, что и в настоящей работе.

Все соединения согласно расчетам имеют близкое к плоскоквадратному окружение иона металла; этиленовый мостик в NiEcim расположен под углом в 31° по отношению к плоскости хелатного цикла. Точечные группы симметрии комплексов: Ni(Acac)₂ — D_{2h} , Ni(Acim)₂ (*mpahc*-

Таблица 1

Соединение									
Связь	Ni(Acac) ₂	Ni(Acim) ₂		N'E '	N		Ni(Acim) ₂		
		транс	цис	NIECIIII	УГОЛ	$Ni(Acac)_2$	транс	цис	INIECIM
N: O	1.960	1 967	1 076	1 970	N: O C	126.7	107 1	100 /	127.0
NI-O	1,002	1,007	1,0/0	1,870	NI-O-C _{βO}	120,7	127,1	128,4	127,0
Ni—N		1,870	1,871	1,884	$Ni - N - C_{\beta N}$		128,8	128,6	126,6
Ο	1,271	1,285	1,274	1,274	$O - C_{\beta O} - C_{\gamma}$	125,0	125,6	125,1	125,1
$N - C_{\beta N}$	—	1,303	1,314	1,316	$N - C_{\beta N} - C_{\gamma}$	—	122,0	122,9	122,8
$C_{\beta O}$ — C_{γ}	1,398	1,383	1,392	1,390	$O - C_{\beta O} - C_{MeO}$	114,8	114,2	114,8	114,8
$C_{\beta N}$ — C_{γ}	—	1,416	1,405	1,409	$N - C_{\beta N} - C_{MeN}$		119,9	118,2	120,3
$C_{\beta O}$ — C_{MeO}	1,507	1,508	1,509	1,509	$C_{\beta O}$ — C_{γ} — $C_{\beta N}$	122,6	123,4	122,8	124,2
$C_{\beta N}$ — C_{MeN}		1,509	1,510	1,513	O—Ni—N	94,2	93,1	92,2	94,1
N—C _R	—	—	—	1,460	Ni—N—C _R	—	—	—	111,8
$C_R - C_R$	—	—		1,517	$N - C_R - C_R$	—	—		108,0

Длины связей (Å) и валентные углы (град.) бис-ацетилацетоната, бис-ацетилацетоимината (транс и цис форма) и этилен-бис-ацетилацетоимината никеля(II)

форма) — C_{2h} , Ni(Acim)₂ (*µuc*-форма) и NiEcim — $C_{2\nu}$. Расчетные геометрические параметры каждой структуры приведены в табл. 1, обозначения атомов представлены на рис. 1.

При аминозамещении длина связи Ni—O возрастает, связь Ni—N длиннее связи металл кислород. В *цис*-конформации связь азота с металлом длиннее, чем в *транс*-конформации, что можно объяснить уменьшением полярности связи Ni—O (табл. 2), происходит искажение связей внутри хелатного цикла. Соединение атомов азота этиленовым мостиком мало влияет на структуру хелатов, но приводит к увеличению длины связи Ni—N и уменьшению связи Ni—O. Такое изменение длин связи объясняется меньшими электронно-донорными свойствами этилена в сравнении с двумя атомами водорода по отношению к атомам азота.

Согласно расчетам порядок связей металла с атомами первой координационной сферы возрастает при аминозамещении, усиливается ковалентное связывание атомов никеля с азотом по сравнению со связью с кислородом. Порядки связей между атомами первой и второй координационной сферы в среднем уменьшаются (см. табл. 2).

При рассмотрении зарядов (табл. 3) при переходе от Ni(Acac)₂, Ni(Acim)₂ (*mpaн*c) к Ni(Acim)₂ (*µuc*), а затем к NiEcim наблюдается, в общем, уменьшение полярности всех связей, так как атом азота является более слабым акцептором электронной плотности, чем кислород, а в случае NiEcim — этилен проявляет более слабые донорные свойства, чем два атома водорода. Стоит также отметить, что при аминозамещении донорные свойства метильных групп Me₀ ослабевают, а Me_N незначительно возрастают. Влияние отрицательного заряда на азоте, боль-

Рис. 1. Структура и обозначение атомов хелата (R = H, CH₂)

Таблица 2

	-				
Caraa	N: (A ana)	Ni(A	NiEsim		
Связь	NI(Acac) ₂	транс	цис	MECHI	
Ni—O	0,535	0,547	0,539	0,562	
Ni—N	—	0,664	0,683	0,666	
$O - C_{\beta}$	1,637	1,555	1,618	1,607	
$N - C_{\beta}$	—	1,656	1,590	1,591	

шего чем на кислороде, ослабляется эффектом поля от положительно заряженного водорода при атоме азота.

Как Ni(Acac)₂, так и Ni(Acim)₂ и NiEcim являются низкоспиновыми соединениями в плоскоквадратном кристаллическом поле лигандов *d*-уровень иона никеля расщепляется на нижний дважды вырожденный и три невырожденных уровня [21] (при этом вырождение в комплексах снимается в связи с нарушением плоскоквадратной симметрии), а так как 3*d*-подуровень никеля заполнен восемью электронами, то все уровни 3*d*-подуровня иона никеля в комплексах заняты па́рами электронов.

Комплексы Ni(Acac)₂ и Ni(Acim)₂ изоэлектронны и характеризуются 67 парами электронов, из которых 23 пары являются остовными и 44 валентными. Комплекс NiEcim имеет на две пары остовных и на пять пар валентных электронов больше. Целесообразно

Натуральные заряды атомов бис-ацетилацетона-
та, бис-ацетилацетоимината (в транс и цис фор-
мах) и этилен-бис-ацетилацетоимината никеля(II)

	Соединение							
Атом	NI:(A)	Ni(A	NPE 1					
	$Ni(Acac)_2$	транс	цис	mechi				
N1	1,085	1,003	1,004	0,989				
0	-0,640	-0,683	-0,648	-0,649				
Ν	—	-0,717	-0,734	-0,546				
$(N+H_R)$		(-0,345)	(-0,387)					
$C_{\beta O}$	0,492	0,460	0,476	0,470				
$C_{\beta N}$	—	0,292	0,288	0,293				
C_{γ} + H_{γ}	-0,277	-0,253	-0,257	-0,244				
Me _O	0,014	0,003	0,007	0,006				
Me _N	—	0,022	0,022	0,017				
$(C_2H_4)/2$	—	—	—	0,159				

рассмотреть верхнюю валентную область, а именно 12-14 верхних занятых уровней.

Электронную структуру верхних валентных уровней рассматриваемых трех комплексов можно охарактеризовать набором МО, представляющих собой комбинацию равных по симметрии атомных орбиталей (АО) металла $(d_{z^2}, d_{xz}, d_{zy}, d_{x^2-y^2})$ и МО лигандов (π_3 , n_- , n_+ , π_2 , π_1).

Наименее смешанными МО являются π_1 и π_2 — нечетные орбитали лигандов и четная $3d_2$ -AO

металла. На рис. 2 представлены соответствующие МО. В верхней части рисунка отображено смешивание четных относительно операции инверсии лигандных МО и аналогичных по симметрии АО никеля для комплекса Ni(Acim)₂. Подобным образом взаимодействуют и орбитали NiEcim.

В связи с понижением симметрии аминозамещенных комплексов по сравнению с исходным комплексом ацетилацетоната никеля смешивание АО никеля с МО лигандов в этих комплексах возрастает, так же как и в случае перехода от *транс*-конформации Ni(Acim)₂ к *цис*конформации и к NiEcim. Например, орбитали π_3 и *n*₋, слабо смешанные в *транс*-форме Ni(Acim)₂, с изменением конформации при переходе от группы симметрии C_{2h} к C_{2v} приобретают вклад АО металла (табл. 4, см. рис. 2).

Влияние АО металла на энергии МО лигандов в комплексах Ni(Acim)₂ и NiEcim продемонстрировано на соответствующей корреляционной диаграмме (рис. 3). На ней сопоставлены расчетные энергии электронных уровней бис-хелатов никеля и энергии α-спин-орбиталей модельных бис-хелатов водорода. Энергии АО Ni взяты произвольно для наглядности диаграммы. Последовательность МО *цис*-формы Ni(Acim)₂ совпадает с последовательностью МО NiEcim (рис. 4).

Основное отличие электронных структур NiEcim и *цис*-конформации Ni(Acim)₂ от электронной структуры *транс*-конформации Ni(Acim)₂ заключается в изменении характера *n*-орбиталей: орбитали n_- и n_+ становятся локализованными в большей степени на атомах кислорода или азота (см. рис. 2), что усиливает межэлектронное взаимодействие этих уровней и приводит к заметному изменению энергии MO (см. рис. 4).

Верхними занятыми молекулярными орбиталями (B3MO) комплексов Ni(Acim)₂ и NiEcim согласно расчетам являются π_3 -орбитали со вкладами соответствующей по симметрии d_{xz} -орбитали металла, и составляющими 25 и 22 % соответственно (см. табл. 4). Ниже при энергии 6,0 эВ лежат два слабосмешанных уровня — нечетный π_3 и четный d_{z^2} . При энергиях 6,3—

585

Таблица 3

Puc. 2. МО верхней валентной зоны комплексов Ni(Acim)₂ и NiEcim. Сверху — четные лигандные орбитали и соответствующие им МО Ni(Acim)₂. Снизу слева — смешивание нечетной π₃ MO с AO никеля в связи с понижением симметрии. Снизу справа — характерные MO хелатов *C*_{2ν} симметрии

Таблица 4

						-			
Ni(Acim) ₂ , <i>mpahc</i> , C_{2h}			Ni(Acim) ₂ , μuc , $C_{2\nu}$			NiEcim, $C_{2\nu}$			
−ε, эВ	МО	Вклад*	-ε, эВ	МО	Вклад*	-ε, эВ	МО	Вклад*	
5,16	$\pi_3 - d_{xz}$	25/16/18	5,16	$\pi_3 - d_{xz}$	25/16/19	5,04 5.84	$\pi_3 - d_{xz}$	22/15/20/4	
6,01 6,03	d_{z^2}	94/4/2	6,04	$\frac{d_{3}d_{yz}}{d_{z^2}}$	91/6/1	6,01	$\frac{d_{3}d_{yz}}{d_{z^2}}$	90/6/1/0	
6,34	d_{vz} - π_2	81/4/2	6,38	d_{vz} - π_2	76/7/1	6,35	d_{vz} - π_2	76/7/1/0	
6,94	$d_{xz}+\pi_3$	66/1/2	6,87	$n_{-} - d_{x^2 - y^2}$	33/43/5	6,79	$n_{-} - d_{x^2 - y^2}$	36/38/6/1	
7,21	<i>n</i> _	2/56/9	6,96	d_{xz} + π_3	66/1/2	6,90	d_{xz} + π_3	66/4/2/1	
7,26	$d_{x^2-y^2}-n_+$	68/22/0	7,57	$n_0 + d_{xy}$	9/60/1	7,55	$n_0 + d_{xy}$	9/60/1/0	
8,36	$n_{-}+d_{xy}$	38/26/2	7,88	$d_{x^2-y^2}+n$	63/10/7	7,83	$d_{x^2-y^2}+n$	63/9/7/6	
8,56	n_+-4p_x	7/12/44	8,68	π_2	1/26/34	8,24	$\pi_2 + C_2 H_4$	1/18/24/19	
8,65	π_2	0/22/36	9,08	$n_{\rm N} + d_{xy}$	14/4/34	8,58	$n_{\rm N} + d_{xy}$	16/3/33/14	
9,24	$\pi_2 + d_{yz}$	16/11/39	9,25	$\pi_2 + d_{yz}$	15/15/37	8,96	$\pi_2 + d_{yz}$	14/8/33/8	
9,67	$n_{+}+d_{x^{2}-y^{2}}$	18/10/16	9,71	$n_{+}+d_{x^{2}-y^{2}}$	15/12/20	9,37	$n_{+}+d_{x^2-y^2}$	18/12/24/21	
9,77	π_1	1/29/10	9,74	π_1	2/28/8	9,57	$\pi_1 + d_{xz}$	6/31/2/8	
9,81	$\pi_1 + d_{vz}$	8/33/4	9,74	$\pi_1 + d_{vz}$	7/22/11	9,68	$\pi_1 + d_{vz}$	3/35/2/1	

Состав и энергия верхних валентных уровней бис-ацетилацетоимината (в транс- и цис-форме) и этилен-бис-ацетилацетоимината никеля(II)

^{*} Вклады в MO атомных орбиталей Ni/2O/2N/C₂H₄ указаны в процентах.

Рис. 3. Корреляционная диаграмма энергий MO Ni(Acim)₂ и NiEcim с лигандными MO, связывание Ni-лиганда обозначено знаком "+", антисвязывание "-" (АО 3*d*-уровней Ni приведены для качественной оценки)

Рис. 4. Корреляционная диаграмма верхних валентных уровней бис-хелатов никеля(II)

6,4 и 6,9—7,0 эВ находятся два уровня с преобладающим вкладом d_{yz} и d_{xz} орбиталей никеля (76—81 и 66 % соответственно). Четвертый преимущественно *d*-уровень (вклад 68 %) имеет энергию 7,26 эВ для *транс*-конформации комплекса Ni(Acim)₂. С понижением симметрии в комплексах Ni(Acim)₂ и NiEcim антисвязывающий вклад n_+ -орбитали лигандов заменяется связывающим вкладом n_- орбитали, в результате уровень $d_{x^2-y^2}$ претерпевает стабилизацию

на 0,6 эВ. Локализованная преимущественно на лигандах орбиталь n_{-} ацетилацетоимината в *транс*-форме с энергией 7,21 эВ дестабилизируется в комплексах, имеющих $C_{2\nu}$ симметрию, на 0,3—0,4 эВ за счет появления антисвязывающего вклада $d_{r^2-\nu^2}$ -орбитали. Далее в шкале

энергии лежат 2 *n*- и 4 π-орбитали (см. табл. 4).

В общем случае стабилизация лигандных уровней обусловлена связывающим взаимодействием АО металла с МО хелатов, дестабилизация, соответственно, антисвязывающим взаимодействием орбиталей (см. рис. 3). Для наглядности влияния аминозамещения на энергии электронных уровней бис-хелатов никеля на основании расчетных данных была построена корреляционная диаграмма верхних валентных уровней комплексов Ni(Acac)₂, Ni(Acim)₂ в *транс-* и *цис-*формах и NiEcim (см. рис. 4).

При аминозамещении наблюдается сильная дестабилизация π_2 - и π_3 -уровней, в меньшей степени дестабилизация π_1 - и *d*-уровней и стабилизация *n*-уровней (см. рис. 4). Изменение энергий π_3 - и π_2 -орбиталей составляет 0,7—0,8 и 0,9 эВ соответственно, *d*-орбиталей — 0,3—0,5 эВ. Последовательность МО Ni(Acim)₂ в *µuc*-форме и NiEcim совпадает.

Для случая *транс*-формы бис-ацетилацетоимината никеля энергия дестабилизации нижней n_- и двух n_+ -орбиталей составляет 0,2—0,3 эВ. Верхняя n_- -орбиталь близка по энергии к n_- орбитали незамещенного хелата, что обусловлено преимущественным вкладом АО атомов кислорода в эту МО. Дестабилизация уровней связана с уменьшением полярности связи и увеличением длин связей в комплексах.

В случае *цис*-формы происходит изменение энергий трех *n*-орбиталей. Верхняя *n*_-орбиталь дестабилизируется на величину 0,34 эВ (см. табл. 4) за счет антисвязывающего вклада АО никеля в результате понижения симметрии комплекса. Вторая *n*_-орбиталь (обозначенная для комплексов C_{2v} симметрии как *n*₀) дестабилизируется на 0,79 эВ, что объясняется отсутствием связывающего вклада d_{xy} -орбитали металла и преимущественной локализацией МО на атомных орбиталях атомов кислорода, что приводит к усилению межэлектронного взаимодействия на этом уровне. Следующая орбиталь — верхняя *n*₊-орбиталь (*n*_N) — стабилизируется за счет появления связывающего вклада d_{xy} -орбитали металла вместо антисвязывающего вклада 4*p_x*-АО. Нижняя из *n*-орбиталей не претерпевает значительного изменения ни по составу, ни по энергии.

Дестабилизация электронных уровней этилен-бис-ацетилацетоимината никеля происходит вследствие антисвязывающего вклада орбиталей этиленового фрагмента и для большей части МО верхней валентной зоны лежит в пределах 0,05—0,1 эВ относительно уровней *цис*-формы ацетилацетоимината (см. рис. 4 и табл. 4). Вклад этиленовых орбиталей в состав таких МО незначителен. Наибольшую дестабилизацию претерпевают n_N , n_+ и два π_2 -уровня (0,3—0,5 эВ).

Основание для сравнения расчетных значений энергий МО с экспериментальными ЭИ дает расширенная теорема Купманса [17, 18], позволяющая поставить в соответствие энергию МО экспериментальной ЭИ с учетом поправки δ_i , называемой дефектом Купманса. Величина дефекта зависит от характера электронного уровня и предполагается маломеняющейся в границах одного теоретического подхода при применении к схожим объектам. Так, дефекты Купманса, установленные для электронных уровней Ni(Acac)₂ [9], могут использоваться для нахождения δ_i для комплексов Ni(Acim)₂ и NiEcim и не должны сильно расходиться.

На основании предложенной методики, а также анализа интенсивностей и полуширин полос ультрафиолетовых фотоэлектронных спектров Ni(Acac)₂, Ni(Acim)₂ и NiEcim было показано, что *транс*-конформация бис-ацетилацетоимината никеля в наибольшей мере соответствует реальной структуре этого соединения в свободном состоянии. Расчет показал малое различие в электронной структуре *цис*-конформации Ni(Acim)₂ и NiEcim (сохранение последовательности МО и лишь незначительное изменение в энергии), из чего следует, что и спектры должны быть схожи — в частности, полоса 7 спектра Ni(Acim)₂ для *цис*-конформации должна иметь приблизительно ту же энергию, что и полоса 6 спектра NiEcim.

В результате было выполнено отнесение полос фотоэлектронных спектров Ni(Acim)₂ и NiEcim (рис. 5). Экспериментальные энергии полос спектров и соответствующие этим полосам расчетные энергии уровней и соответствующие дефекты Купманса занесены в табл. 5. Полученная зависимость величин дефектов Купманса $\delta(3d) < \delta(\pi_3) < \delta(n)$ для различных типов орбиталей комплексов Ni(Acim)₂ и NiEcim соответствует установленной зависимости δ для Ni(Acac)₂ [9].

Рис. 5. Отнесение полос фотоэлектронных спектров Ni(Acim)₂ (слева) и NiEcim (справа) (значения δ приведены в табл. 5)

Таблица 5

Ni(Acim) ₂ (<i>транс</i> -конформация)				NiEcim					
Эксперимент		Отнесе	тнесение полос			еримент	Отнесение полос		
Пик	ЭИ _i , эВ	МО	<i>−</i> ε _{<i>i</i>} , эВ	δ_i	Пик	ЭИ _і , эВ	MO	<i>-</i> ε _i , эВ	δ_i
1	6,93	$\pi_3 - d_{xz}$	5,16	1,77	1	6,58	π_3-d_{xz}	5,04	1,54
2	7,63	d_{z^2}	6,03	1,60	2	7,5	$\pi_3 \pm d_{yz}$	5,84	1,66
3	7,79	d_{yz} - π_2	6,34	1,45			d_{z^2}	6,01	1,49
4	8,08	π_3	6,01	2,07	3	7,8	d_{vz} - π_2	6,35	1,45
5	8,49	d_{xz} + π_3	6,94	1,55	4	8,19	d_{xz} + π_3	6,90	1,29
		$d_{x^2-y^2} - n_+$	7,26	1,23			$n_{-} - d_{x^2 - y^2}$	6,79	1,40
6	9,29	<i>n</i> _	7,21	2,08	5	9,12	$d_{x^2-y^2} + n$	7,83	1,29
7	10,15	$n_{-}+d_{xy}$	8,36	1,79	6	9,5	$n_{\rm O} + d_{xy}$	7,55	1,95
		π_2	8,65	1,50			$\pi_2 - C_2 H_4$	8,24	1,26
8	10,6	n_++4p_x	8,56	2,04	7	10,4	$\pi_2 + d_{yz}$	8,96	1,44
9	10,8	$\pi_2 + d_{yz}$	9,24	1,56	8	10,7	$n_{\rm N} + d_{xy}$	8,58	2,12
10	11,1	π_1	9,77	1,33					

Отнесение полос фотоэлектронных спектров Ni(Acim)₂ и NiEcim

ЗАКЛЮЧЕНИЕ

Метод интерпретации фотоэлектронных спектров при помощи квантово-химического моделирования в рамках теории функционала плотности позволяет исследовать электронное строение валентной области хелатных комплексов переходных 3*d*-металлов, проводить интерпретацию полос фотоэлектронных спектров и изучать природу электронных уровней, что было продемонстрировано на примере бис-ацетилацетоимината и этилен-бис-ацетилацетоимината никеля(II). Полярность связей внутри хелатных циклов при аминозамещении понижается, ковалентность связывания атомов хелатов возрастает. В комплексе Ni(Acim)₂ полярность связи Ni—O возрастает до 10 %, в NiEcim не изменяется по сравнению с Ni(Acac)₂. Ковалентность связывания металла с атомами первой координационной сферы при аминозамещении возрастает до 20 %.

Работа выполнена при финансовой поддержке Научного фонда ДВФУ (грант 12-03-13008-16/13) и Министерства образования и науки РФ в рамках Государственного задания № 2014/36 по НИР № 1137 Дальневосточного федерального университета.

СПИСОК ЛИТЕРАТУРЫ

- 1. Мазалов Л.Н., Крючкова Н.А., Парыгина Г.К., Трубина С.В., Тарасенко О.А. // Журн. структур. химии. – 2008. – **49**. – С. 22 – 43.
- 2. Vigato P.A., Peruzzo V., Tamburini S. // Coord. Chem. Rev. 2009. 253. P. 1099 1201.
- 3. Radon M., Srebro M., Broclawik E. // J. Chem. Theory Comput. 2009. 5. P. 1237 1244.
- 4. Zeller A., Herdtweck E., Strassner Th. // Inorg. Chem. Comm. 2004. 7. P. 296 301.
- 5. Miteva T., Romanova J., Ivanova A., Tadjer A., Baumgarten M. // Eur. J. Inorg. Chem. 2010. P. 379 390.
- 6. Novak I., Kovač B. // J. Organ. Chem. 2007. 692. P. 2299 2305.
- Williams P.A., Jones A.C., Bickley J.F., Steiner A., Davies H.O., Leedham T.J., Impey S.A., Garcia J., Allen S., Rougier A., Blyr A. // J. Mater. Chem. – 2001. – 11. – P. 2329 – 2334.
- Vovna V.I., L'vov I.B, Slabzhennikov S.N., Ustinov A.Yu. // J. Electron Spectr. Relat. Phenom. 1998. 88-91. – P. 109 – 117.
- 9. Vovna V.I., Korochentsev V.V., Komissarov A.A., L'vov I.B. // Russ. J. Phys. Chem. B. 2013. 7, N 3. P. 220 224.
- 10. Gordon M. http://www.msg.ameslab.gov/gamess/index.html.
- 11. Грановский А.А. http://classic.chem.msu.su/gran/firefly/index.html.
- 12. Kudrat-E-Zahan Md., Nishida Y., Sakiyama H. // Inorg. Chim. Acta. 2010. 363. P. 168 172.
- 13. *Liu S.-J., Song N.-N., Wang J.-X., Huang Y.-Q., Zhao Q., Liu X.-M., Suna S., Huang W. //* Phys. Chem. Chem. Phys. 2011. **13**. P. 18497 18506.
- 14. Schäfer A., Huber C., Ahlrichs R. // J. Chem. Phys. 1994. 100. P. 5829.
- 15. Eichkorn K., Treutler O., Öhm H., Häser M., Ahlrichs R. // Chem. Phys. Lett. 1995. 242. P. 652.
- 16. Eichkorn K., Weigend F., Treutler O., Ahlrichs R. // Theor. Chem. Acc. 1997. 97. P. 119.
- 17. Ernzerhof M. // J. Chem. Theory Comput. 2009. 5. P. 793 797.
- 18. Luo J., Xue Z.Q., Liu W.M., Wu J.L., Yang Z.Q. // J. Phys. Chem. 2006. 110. P. 12005 12009.
- 19. Vovna V.I., Tikhonov S.A., L'vov I.B. // Russ. J. Phys. Chem. A. 2011. 85, N 11. P. 1942 1948.
- 20. Vovna V.I., Korochentsev V.V., Docenko A.A. // Russ. J. Coord. Chem. 2012. 38, N 1. P. 36 43.
- 21. Atkins P.W., Overton T.L., Rourke J.P., Weller M.T., Armstrong F.A. Shriver and Atkins' Inorganic Chemistry. Oxford UK, 2010.

590