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Экспериментально и численными методами исследованы процессы горения богатых смесей ме-
танола и водорода с воздухом. Показано, что отклонение от правила Ле Шателье для богатых
пределов распространения пламени обусловлено двумя факторами: ингибированием метанолом
распространения пламени в богатых смесях водорода и наличием сверхадиабатических темпе-
ратур в богатых смесях метанола. Показано, что результат действия добавки водорода в малых
количествах в богатые смеси метанола совпадает с результатом действия инертных добавок

азота и диоксида углерода. Численное моделирование показало, что добавление небольших ко-
личеств водорода в богатые смеси метанола приводит только к физическому воздействию на

нормальную скорость распространения пламени. Добавки Н2 действуют на реализацию сверх-
адиабатических температур в пламени метанола так же, как инертные добавки СО2 и N2.
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ВВЕДЕНИЕ

Знания о пределах распространения пла-
мени в смесях топливо — окислитель важны

для оценки пожаро- и взрывобезопасности то-
го или иного технологического процесса. Осо-
бый интерес представляют смеси, в которых
имеются два или более вида топлива. Мета-
нол рассматривается в качестве возобновляе-
мого источника энергии или в качестве доба-
вок к другим топливам [1]. Естественно, что
исследователей интересует результат воздей-
ствия добавления того или иного вида топлива

на процессы распространения пламени в сме-
сях метанола с окислителем. Например, в ра-
боте [2] получены экспериментально области

распространения пламени в смесях метанол —
метан — воздух. Авторами [2] показано, что
правило Ле Шателье [3] для богатых преде-
лов распространения пламени не выполняется.
Из характера зависимости предела можно сде-
лать вывод о том, что метанол окисляется пре-
имущественно тогда, когда концентрация кис-
лорода недостаточна для полного окисления и

метана, и метанола. Добавка водорода в сме-
си метанола и воздуха также представляет ин-
терес, поскольку она может существенно уве-
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личивать скорость распространения пламени.
Воздействие добавок водорода на процесс горе-
ния в этих смесях изучено мало. Действие ме-
танола при добавлении в богатые смеси водоро-
да с воздухом можно разделить на две состав-
ляющие [4]. Метанол обладает определенной
эффективностью ингибирования (глубиной ин-
гибирования), связанной с реакциями добавки
с активными радикалами, что уменьшает кон-
центрацию последних и тем самым уменьшает

нормальную скорость распространения пламе-
ни. Вторая составляющая связана с теплофи-
зическим воздействием на процесс распростра-
нения пламени. С другой стороны, неясно, как
будут действовать добавки водорода в богатые

смеси метанола, в которых реализуются свер-
хадиабатические температуры.

Цель работы — экспериментальное и чис-
ленное исследование процесса горения богатых

смесей метанола и водорода с воздухом.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В данной работе пределы распространения

пламени определялись в условиях сферического

реактора объемом 3 л с центральным поджига-
нием. Смесь метанола с воздухом и добавка-
ми водорода, азота и оксида углерода СО2 го-
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товилась в смесителе. Метанол из испарителя
с температурой 65 ÷ 70 ◦C подавался в сме-
ситель по обогреваемым трубопроводам. Азот,
СО2 и водород дозировались из баллонов. Дози-
ровка компонентов горючей смеси в смесителе

проводилась по U-образному ртутному мано-
метру. Все коммуникации и смеситель обогре-
вались для предотвращения конденсации ме-
танола. Готовая смесь перепускалась из сме-
сителя в нагретый реактор с помощью элек-
тромагнитного клапана. Реактор был снабжен
электрическим обогревателем. Это позволяло
поддерживать температуру стенок в пределах

80 ÷ 700 ◦C. Горючая смесь поджигалась в
центре реактора конденсаторной искрой малой

продолжительности (≈ 10 мс). В качестве элек-
тродов использовалась молибденовая проволо-
ка диаметром 1 мм. Спектр такой искры со-
ответствует спектру смеси, в которой происхо-
дит разряд, т. е. материал электродов не рас-
пыляется и не влияет на условия поджигания

и распространение пламени [5]. Напряжение на
конденсаторах составляло 6 ÷ 6.5 кВ, запасен-
ная энергия — 1.5 ÷ 1.8 Дж. Время перепус-
ка — 0.5 с. Оно определялось от момента от-
крытия клапана до выхода давления на «полоч-
ку». Считалось, что пламя распространяется
после зажигания, если давление после сгорания
превышало начальное на 0.01 МПа. За предел
распространения пламени принималось значе-
ние концентрации метанола в смеси, соответ-
ствующее составу, находящемуся между соста-
вом, для которого емкостным датчиком зареги-
стрировано минимальное повышение давления

0.01МПа, и составом, для которого оно не заре-
гистрировано. Точность определения значения
предела ±0.1 % (об.). Смесь поджигалась ав-
томатически через 1 с после перепуска. Срав-
нение пределов распространения пламени в бо-
гатых смесях метанола при различных темпе-
ратурах, полученных в стандартных условиях
вертикальной трубы при нижнем поджигании

[6] или в сосудах малого объема [2], с результа-
тами настоящей работы показало их хорошее

совпадение (рис. 1). Данные при температурах
100 и 200 ◦C получены стандартным методом в
вертикальной трубе диаметром 5 см и длиной
1.5 м при нижнем поджигании [6]. Данные для
температур 50 и 100 ◦C [2] и 400 ◦C [6] полу-
чены в сосудах небольшого объема. При этом
можно отметить, что в работе [2] использова-
лись два сосуда разного объема и два разных

критерия предела. Можно добавить, что в ра-

Рис. 1. Зависимость пределов распростране-
ния пламени в смесях метанол — воздух от

начальной температуры (p = 0.1 ÷ 0.12 МПа)

боте [7] для температур 50 и 200 ◦C приведены

значения пределов для метанола 36.4 и 44.8 %
(об.), достаточно близкие к представленным на
рис. 1 значениям. Видно, что используемый в
данной работе экспериментальный метод мож-
но применить для получения пределов распро-
странения пламени в смесях метанол — воздух

при повышенных температурах.

МОДЕЛИРОВАНИЕ

Для достижения поставленной цели ис-
пользовалась программа [8] с кинетической

схемой окисления метилового спирта [9]. Ме-
ханизм [9] достаточно хорошо описывает и на-
ши экспериментальные данные по нормальным

скоростям для смесей метанола и водорода [10].
Для того чтобы узнать результат участия до-
бавленного водорода в реакциях в пламени ме-
танола, необходимо было исходную схему реак-
ций модифицировать, поставив метку на атомы
водорода. Модификация проводилась по мето-
ду численного моделирования с меткой, предло-
женному в [11]. При помещении метки на атом
водорода количество реагентов увеличивается

с 19 до 68, а количество реакций — с 89 до 821.
Для термодинамических данных частиц с мет-
кой учитывалось изменение числа симметрии

молекулы. Использовался также простой вари-
ант модификации кинетической схемы, в кото-
ром был запрет на участие в реакциях добав-
ленного водорода, обозначенного в схеме симво-
лом FH2. Добавленный FH2 участвует в реак-
циях только в качестве инертной частицы. Ме-
ханизм с меткой FH2 отличается от механизма
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без метки только тем, что в реакциях с уча-
стием Н2 в качестве третьей частицы добавля-
ется реакция с участием FH2 с коэффициентом

увеличения скорости реакции, равным коэффи-
циенту увеличения скорости реакции для Н2.
Впервые простой вариант модификации кине-
тической схемы был предложен в работе [12] с
целью узнать, сводится ли роль добавки СО2
только к роли инертного разбавителя. В более
поздних работах [13, 14] авторам удалось, ис-
пользуя метод [12], разделить физический и хи-
мический вклады влияния N2 и СН4 на пламя

сингаза [14] и Н2 на пламена метана и этана

[13].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

.
На рис. 2 представлены зависимости бога-

того предела распространения пламени в сме-
сях метанола с воздухом от добавок H2, СО2 и

N2 при трех разных температурах и давлении

0.12 МПа. Для смесей метанола с водородом
характерно наличие двух нелинейных участ-
ков — при малых концентрациях метанола и

при малых концентрациях водорода. При ма-
лых концентрациях метанол ингибирует рас-
пространение пламени. Особенность экспери-
ментальных данных заключается в том, что
влияние добавки до 10 ÷ 15 % водорода на бога-
тый предел полностью совпадает с воздействи-
ем добавки СО2 и азота. Этот факт может ука-

Рис. 2. Зависимость богатых пределов рас-
пространения пламени в смесях метанол —
воздух от добавок Н2, СО2, N2:

p = 0.12 МПа; 1 — Н2 (×), СО2 (4), T = 648 К;
2 — Н2 (×), N2 (�), T = 478 К; 3 — Н2, T = 353 К

Рис. 3. Зависимость нормальной скорости

распространения пламени от концентрации

метанола в смесях метанол— воздух без доба-
вок и с добавками (p = 0.12 МПа, T = 353 К)

зывать на то, что водород в этом случае вносит
только физический вклад в значение нормаль-
ной скорости распространения пламени. Под
физическим вкладом водорода подразумевается

эффект разбавления при добавлении водорода

и изменение термодиффузии в смеси. Модели-
рование с использованием кинетических схем

с добавками 5 % Н2 и 5 % FH2 показало, что
значения нормальной скорости распростране-
ния пламени Su при концентрациях метанола
больше 16 % одинаковы (рис. 3). Это означает,
что добавка 5 % Н2 вносит только физический

вклад в значение нормальной скорости, а хи-
мический вклад равен нулю. Под физическим
вкладом подразумевается разница в скоростях

в смеси без добавки Н2 и в смеси с добавкой

5 % FH2. Под химическим вкладом подразуме-
вается разница в скоростях в смеси с добавкой

5 % Н2 и в смеси с добавкой FH2. Химический
вклад начинает расти с уменьшением концен-
трации метанола (рис. 4, кривая 1). Наиболь-
ший физический вклад наблюдается для 17 %
СН3ОН. Наибольший химический вклад, есте-
ственно, имеет место в бедной стороне концен-
траций метанола.

Нулевое химическое воздействие добавки

водорода в богатых смесях метанола с воз-
духом не означает, что добавленный Н2 не

участвует в реакциях и не расходуется. На
рис. 5 приведены данные, показывающие, что
добавленный меченый водород Н∗2 действитель-
но расходуется (кривая 2). Однако уменьше-
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Рис. 4. Зависимость химического (1) и физи-
ческого (2) вкладов в значение нормальной
скорости распространения пламени в смесях

метанола с воздухом от концентрации мета-
нола при добавке 5 % водорода (p = 0.12 МПа,
T = 353 К)

Рис. 5. Профили концентраций добавок во

фронте пламени в смеси 25 % CH3OH/10 %
H∗

2 / воздух (p = 0.12 МПа, T = 353 K)

ние концентрации меченого Н∗2 во фронте пла-
мени компенсируется образованием немечено-
го Н2 (кривая 1) в реакциях метанола. Мече-
ный атом Н∗ присутствует также в молекулах
НН∗. Однако концентрация НН∗ на порядок ни-
же концентраций Н2 и Н

∗
2, поэтому на рис. 4 за-

висимость концентрации НН∗ от температуры
во фронте пламени не представлена.

То, что на богатые пределы в смеси мета-
нол — воздух добавки водорода, азота и диок-
сида углерода действуют практически одина-

Рис. 6. Зависимость величины Tmax − Teq от

концентрации кислорода в смеси метанол —
воздух без добавок (1) и с добавками (2) (p =
0.12 МПа, T = 353 К)

ково, может означать, что уровень сверхадиа-
батики в этих пламенах зависит только от кон-
центрации кислорода в смеси. На рис. 6 пред-
ставлена зависимость величины Tmax − Teq от
концентрации кислорода при добавках 5 % H2,
5 % N2 и 5 % CO2. Естественно, что добав-
ленный водород участвует в реакциях с обра-
зованием воды. Однако этот факт не влияет на
величину Tmax − Teq.

ЗАКЛЮЧЕНИЕ

Получены экспериментальные данные по

пределам распространения пламени в смесях

метанола с воздухом с добавками водорода, азо-
та и оксида СО2. Установлено, что малые до-
бавки водорода, азота и СО2 воздействуют на

предел практически одинаково. Численное мо-
делирование показало, что добавление неболь-
ших количеств водорода в богатые смеси мета-
нола приводит только к физическому воздей-
ствию на значение нормальной скорости рас-
пространения пламени. Поэтому водород, азот
и оксид углерода СО2 одинаково влияют на

богатые пределы распространения пламени в

смесях метанола с воздухом. Показано, что со-
отношение между химическим и физическим

воздействием зависит от концентрации мета-
нола в смеси с воздухом. Из полученных дан-
ных следует, что добавка водорода действует
на реализацию сверхадиабатических темпера-
тур в пламенах богатых смесей метанола так

же, как инертные добавки СО2 и N2.
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