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Abstract—A general procedure is suggested for calculating the upper (Voigt) and lower (Reuss) bounds of the average elastic constants 
of an anisotropic medium from crystallographic directions. The elastic tensors of Hooke’s law can be expanded into irreducible representa-
tions of the rotation group. The Voigt/Reuss-averaged elastic constants depend on the second and fourth moments of the distribution func-
tion rather than on the entire function used for the averaging. In this case, the distribution function depends on one angle, while the elastic 
constants depend on two variables. The limitations imposed by the probability theory on the moment values are investigated and used to 
derive general constraints on the Voigt (Reuss) bounds of elastic constants.
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INTRODUCTION

Seismology commonly deals with complex media that 
are microheterogeneous on the scale of seismic wavelengths, 
with poorly constrained orientations of crystal lattice planes 
and stronger anisotropy in minerals than in large-scale rock 
volumes. Olivine, one of most widespread mantle minerals, 
has strongly anisotropic elastic properties, with a 25% dif-
ference of P-wave velocities along fast and slow directions, 
but the mantle is generally isotropic (anisotropy within 5%). 
The elastic constants of rocks and minerals are calculated as 
averages over some distribution function chosen for lattice 
orientations.

The averaging of elastic constants of microheterogeneous 
media has a very long history dating back to the works of 
Voigt (1889) and Reuss (1929) who suggested to average 
the elastic tensors of Hooke’s law: stiffness tensor and com-
pliance tensor (its inverse), respectively. Later it was shown 
that the two average tensors are, respectively, the upper and 
lower bounds of the volume average tensor. Originally it 
was assumed that all lattice plane orientations were equally 
probable and that the average medium was isotropic, though 
some cases of preferred orientation were mentioned in the 
review of Shermergor (1977). Nontrivial distribution func-
tions of crystal plane orientations were discussed in some 
publications (Roe, 1965; Morris, 1969; Sayers, 1994, 2005, 
2013; Zuo et al., 1989; Jacobsen et al., 2003). However, the 
results were obtained for specific cases and presented in the 
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tabular form, which failed to provide a clear picture, appar-
ently, because of poorly suitable formalism. The averaging 
was applied directly to the components of three-dimensional 
tensors, which were transformed using a matrix of 3D rota-
tions, and the matrix elements were expressed via Euler an-
gles; the procedure also included integration of numerous 
dot products of sines and cosines. 

The key idea of this study consists in preliminary use of 
some linear combinations of tensor components which cor-
responds to expansion of the tensor into irreducible rotation 
group representations, in the same way as the distribution 
function in the cited publications was expanded into general-
ized spherical functions. Thus the averaging becomes trivial 
and can be performed in the most general case for any sym-
metry and distribution function of lattice plane orientations.

With this approach, quite different distribution functions 
turn out to be equivalent, i.e., may lead to the same average 
elastic constants. Or, more precisely, the bounds of elastic 
constants depend on second or fourth moments of the distri-
bution function rather than on the entire function, altogether 
on 106 variables. Any two distribution functions that have 
identical sets of moments will lead to the same bounds of 
the average elastic constants. In mathematical notations, all 
distribution functions are divided into classes of equivalent 
functions. The classes can be enumerated by defining the 
second and fourth moments of the distribution function, 
while the bounds of elastic constants turn out to be the linear 
functions of the moments rather than the functionals of the 
distribution function. Some of these properties were noted in 
previous studies but their origin is explicable uniquely using 
the expansion of elastic tensors. This fact allows simplifica-
tion for further analysis. 
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Note that the above case is the simplest one, with tri-
clinic symmetry in both the whole medium and in its con-
stituents, while the symmetry patterns in practical seismol-
ogy are much more complicated. Macroscopic anisotropy is 
commonly interpreted in terms of transverse isotropy, and 
the microscopic medium constituents are either transversely 
isotropic as well or have orthorhombic symmetry (like many 
minerals). Eventually, the scaring number 106 reduces to 
only two variables for the distribution function of a trans-
versely isotropic medium consisting of transversely isotro-
pic elements and to five variables for that consisting of or-
thorhombic elements.

Note especially that the consideration below, although ad-
dressing Voigt averaging (upper bounds of elastic constants), 
actually is based on the transformation properties of the stiff-
ness tensor associated with rotation of coordinates and on its 
symmetry. This approach is also valid for Reuss averaging 
(lower bound of elastic constants). Furthermore, since the 
compliance tensor sijkl is inverse to the stiffness tensor cijkl, 
the two have the same symmetry (transverse isotropy). Thus, 
the general equation, as well as those for specific cases, hold 
also for the components of sijkl corresponding to those of cijkl. 
All conclusions likewise apply to any tensor that character-
izes any property of the medium (not only elasticity) and has 
the same symmetry as the elastic tensors. The approach can 
be obviously extended to other tensor types related to anisot-
ropy (e.g., dielectric permittivity).

The Voigt and Reuss bounds are either close to or far 
from the average elastic tensors depending on microstruc-
ture, which is evident when the tensor can be calculated pre-
cisely. For instance, Schoenberg and Muir (1989) suggested 
a calculus for a finely layered anisotropic medium assuming 
constant strain within each layer, constant stress normal to 
the layer boundaries, and constant strain tensor in the layer 
planes over the whole medium. 

The medium modeled in this study consists of alternating 
layers of two types and equal thicknesses composed of the 
same transversely isotropic material with the stiffness tensor 
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Then, the Voigt average stiffness tensor corresponds to 
orthorhombic symmetry:
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while the exact volume average stiffness tensor corresponds 
to monoclinic symmetry: 
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The quantitative difference between the two tensors can 
be expressed as a norm ratio of the difference ca – ce to ce; 
the norm square is assumed to be the tensor self convolution 
along all components: c c cijkl ijkl

2 =  . Then ||ca – ce||/ ||ce|| = 
0.085. 

The matrix u1 corresponds to the rotation of the symme-
try axis of the transversely isotropic medium through the 
angle 50°. At the 10° rotation about the x axis 
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while the exact volume average tensor is
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In this case, ||ca – ce|| / ||ce|| = 0.013.
Another result of this study arises from the reasonable 

intention to analyze the general dependence of Voigt aver-
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age elastic constants on the distribution function of crystal-
lographic orientations (orientation distribution), which is 
reduced to a linear function of few parameters. The only 
assumption for the distribution function itself is that it ex-
ists. This assumption, along with the generalized assump-
tions on the symmetry of single crystals and the average 
polycrystalline medium, is sufficient to arrive at interesting 
conclusions. For instance, the Voigt average elastic con-
stants are linear functions of two variables if both the poly-
crystalline material and the constituent crystals are trans-
versely isotropic, while the variables are the second and 
fourth moments of the distribution function (variance and 
kurtosis, respectively) which obey the probability inequali-
ties that bracket the range of their permitted values. There-
fore, the upper and lower bounds of five elastic constants of 
a transversely isotropic medium correlate with one another 
and their ranges are quite rigorously constrained. The con-
straints show whether the anisotropy bounds fit specific me-
dium models.

The mathematical problems relevant to this consideration 
are of two types related to the theories of (1) group represen-
tation and (2) probability. The problems of type 1 concern 
the groups of three-dimensional Euclidean space rotations 
and use the concepts of irreducible tensor, quantum mechan-
ic angular momentum, spinor, expansion into irreducible 
representations, and generalization of spherical functions. 
The type 2 probability problems include the restricted mo-
ment problem: whether a distribution function with speci-
fied values of several lower moments can exist and, if yes, 
how does this function (the simplest function of this kind) 
may look. The problems were solved in 1D in the 19th cen-
tury by Chebyshev and Markov (Krein and Nudelman, 
1973), and the results are directly applicable to analysis of 
transversely isotropic polycrystalline materials composed of 
transversely isotropic crystals, which is the subject of this 
study. However, the case of a transversely isotropic medium 
with orthorhombic constituents requires a 2D solution for 
moments. The latter problem can have independent applica-
tions and will be a subject of a separate study.

PROBLEM FORMULATION

The problem is formulated for a microheterogeneous me-
dium with invariable symmetry and elastic constants, i.e., 
with the specified stiffness tensor cijkl and the crystallograph-
ic directions distributed according to the function f(ψ, θ, ϕ), 
where ψ, θ, and ϕ are the Euler angles of the lattice planes 
rotated with respect to the laboratory coordinates (Fig. 1).

Two problems are solved, for (1) Voigt average stiffness 
tensor in laboratory coordinates and (2) its correlation and 
boundary values.

Problem (1) consists in calculating the average 

c c u u u u f duijkl
a
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where uik are the orthogonal matrices of three-dimensional 
rotations, and the integration along the rotation group is 
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In problem (2), correlation of the Voigt average stiffness 
tensor means linear dependence of the сa components when 
the distribution function moments are fewer than the tensor 
components. The problem is solved in this study for a trans-
versely isotropic polycrystalline material consisting of 
transversely isotropic single crystals.

EXPANSION INTO IRREDUCIBLE  
REPRESENTATIONS

Problem 1 can be solved in the group representation the-
ory by expansion of variables into irreducible representa-
tions of the rotation group. The tensor cijkl is a reducible rep-
resentation, while irreducible tensors are those that are fully 
symmetrical and convolve to zero along any two compo-
nents. The stiffness tensor is symmetrical (allowing the per-
mutation of subscripts): 

c c c cijlk klij jikl ijlk= = =  (3)

and can form two nonzero convolutions 

a c b cij ijkk ik ijkj= =, ,� � � �  (4)

known as the bulk modulus and Voigt stiffness tensor 
(Helbig, 1994). These tensors, in their turn, are symmetrical 
and expandable into a unit tensor and a traceless part 

a a a b b bij ij ij ij ij ij� � � �
1

3

1

3
� �, ,   (5)

where 

a a b bii ii= =, .   (6)

Fig. 1. Euler angles.
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Thus, the irreducible tensor cijkl  (symmetrical along all 
components and convolving to zero) can be obtained by 
adding the combined tensor aij , bij  and the unit tensor to 
the stiffness tensor. This combination obviously satisfies the 
same symmetry properties as the stiffness tensor. There are 
eight possible combinations, and 
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The coefficients are found assuming that the convolution 
of the left-hand side along kl and jl gives the tensors aij and 
bik, respectively: 
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The stiffness tensor has 21 independent components in 
the general case, and can be reconstructed according to ir-
reducible tensors: cijkl  (9 independent components), aij  and 
bij  (5 components each), the scalars a and b (1 component 
each), which makes altogether 9 + 5 + 5 + 1 + 1 = 21 com-
ponents.

To change from the tensor notation ti il1…
to that of mo-

ments tm
l� � , where m = –l,…, l denote independent compo-

nents (altogether 2l + 1 components for the irreducible ten-
sor of l components), one has first to use the spinor 
representation, i.e., find the irreducible spinor t

l l� � � �1 1�
cor-

responding to the irreducible tensor ti il1… . The spinor is like-
wise symmetrical on all subscripts and zeroes upon convo-
lution, but the subscripts take the values 1 and 2 (section 57 
in (Landau and Lifshitz, 1991)):
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The equation includes the metric g in the spinor represen-
tation and the Pauli matrices 
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Inverse transformation of (9) gives
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corresponds to the spinor representation. After all transfor-
mations, the stiffness tensor becomes represented by cm
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, , , ,     means that the 

set of variables cm
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, am

2� �
,    b a bm
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, ,  is equivalent to the ten-

sor cijkl .
The new notation highlights the independent components 

explicitly, but it is the way of their transformation during the 
rotation of coordinates that is especially important. If the 
initial tensor components are transformed as 

c u u u u cijkl ip jq kr ls pqrs' = ,  (14)
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where the 3×3 orthogonal rotation matrices u are expressed 
via the Euler angles ϕ, θ, ψ, the new components tm

l� �  are 
transformed as (Vilenkin, 1991) 
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m = 0 and n = 0 are the Legendre polynomials; m = 0 and 
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tensor in fixed laboratory coordinates through that in the ro-
tated crystallographic directions, is 
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For the Voigt average, it only remains to expand the dis-
tribution function f into the d functions 
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(first term is 1 by the norm conditions for the distribution 
function f ), where 
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and to take into account the orthogonality of the d func-
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To calculate the average elastic constants, one has to (a) 
transform crystallographic components to the notation of 
equations (13), (b) find average values with equations (23), 
and (c) recalculate back to crystallographic components us-
ing equations (13).

Thus, the components of the average stiffness tensor de-
pend on 81 variables fmn

4� � , m, n = 0, ±1, ±2, ±3, ±4 and 25 
variables fmn

2� � , m, n = 0, ±1, ±2, altogether 81 + 25 = 106 
variables, while the other parameters of the distribution 
function are insignificant for the averaging.

Note that the expansion of the distribution function along 
the complete orthogonal set of functions was used previ-
ously as well, but the suggested expansion of the stiffness 
tensor is novel.

SIMPLIFICATIONS FOR ISOTROPIC,  
TRANSVERSELY ISOTROPIC,  
AND ORTHORHOMBIC CASES

Equations (13) can be simplified for specific cases of or-
thorhombic, transversely isotropic, and isotropic media. In 
the orthorhombic case, odd components disappear while 
even ones become real: 
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In the transversely isotropic case, only the components 
with m = 0 hold and do not change when rotated about the 
axis z 
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In the isotropic case, only scalar components hold: 

a c c b c c� � � �3 6 6 311 12 11 12, .   (26)

The inverse equations for the isotropic and transversely 
isotropic cases are 
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and 
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(28)

In the simplest Voigt averaging, the medium is isotropic 
or transversely isotropic. If the orientation distribution does 
not depend on angles, only the component f00

0
1

� � �  is non-
zero. With only a and b surviving in the Voigt average ten-
sor, the medium is isotropic. The Voigt average elastic con-
stants are expressed by equations coinciding with (1.3)–(1.6) 
from Chapter 3 in the book of Shermergor (1977).

If the distribution function does not depend on the angle 
ϕ, only the components f n

l
0
� �  and, correspondingly, the m = 0 

components of the average stiffness tensor are nonzero. The 
tensor does not change upon rotation about the axis z, and 
the Voigt average medium is transversely isotropic.

In the transversely isotropic case, the most general distri-
bution function depends only on the angle θ and the Voigt 
average tensor depends on two coefficients f00

2� �  and f00
4� � , 

denoted hereafter as f2 and f4 for simplicity. Of course, the 
distribution function which depends only on θ applies to an 
arbitrary initial medium, and the Voigt average elastic com-
ponents will still depend on two variables.

In the orthorhombic case, the dependence of the distribu-
tion function on θ and ψ is essential. The medium parame-
ters depend on five variables f00

4� � , f f02

4

0 2
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4
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, because the tensor components are real 
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The averaging equations (23) for these specific cases are 
simplified as 
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for a transversely isotropic case and as 
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(30)

for the orthorhombic case.

A PRIORI  ESTIMATES OF VOIGT AVERAGE  
ELASTIC CONSTANTS

A priori estimates of Voigt average elastic constants are 
of special interest because the probability orientation distri-
bution is poorly constrained. The a priori estimation is done 
assuming only the very existence of the distribution func-
tion, which in this study depends on θ only: 

f l f P
l

l
l� �

�
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� ��1
1

00(2 +1) cos ,  (31)

where P xl � �  are the Legendre polynomials; the group aver-
aging is 

� ��gdu g d1
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� � �( ) sin  .  (32)

The second and fourth Legendre polynomials are 
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and the substitution cosθ = x leads to the distribution func-
tion and the averaging 
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 (34)

The coefficients f2,4 of our interest are expressed via the 
second and fourth moments of the distribution function 

f f x P x dx x
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Therefore, the calculation of the permitted values of f2 
and f4 is a reduced problem of moments which checks the 
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existence of a distribution function in the range –1 < x < 1, 
with the second and fourth moments M2 and M4. 

If such function exists, 

M M M2

2

4 2 1< < <   (36)

and, vice versa, the distribution function exists if the in-
equalities fulfill. This can be proven with an example (Krein 
and Nudelman, 1973): 

1

2
1 2

2
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2
2

4

4

2

f x M
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x M
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x M
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� � � �
�

�
��

�

�
�� � � � �

�

�
��

�

�
��� � .  (37)

Note that (37) is not the only possible orientation func-
tion but is rather the simplest representative of equivalent 
functions. 

In terms of f2,4, the inequalities (36) arrive at 

12 5 7 18 35 10 74 2 4 2
2

2f f f f f� � �, . (38)

They have simple geometrical meaning: the domain of 
permitted values in the plane f f2 4,� �  is confined between a 
parabola below and a straight line above (Fig. 2). Each point 

of this parabolic segment has its corresponding distribution 
function (or rather a class of equivalent functions).

The distribution functions on the parabola correspond to 
the equation M M2

2
4=  and can be called variance-free be-

cause they are expressed via a single delta function: 

1

2
2f x x M� � � �� �� .  (39)

Note that the distribution functions of this kind were sug-
gested previously (e.g., equations (2.32) and the following 
derivation in Chesnokov, 1977), but without understanding 
of their role as a bound of possible distributions; neither 
there was understanding that adding another delta function 
may lead to all possible distribution functions (representa-
tives of the respective classes of equivalent functions).

The distribution functions on the straight line correspond 
to M2 = M4 and have the greatest variance as they are ex-
pressed via the most distant delta functions 

1

2
1 12 2f x M x M x� � � �� � � � � �� �� � .  (40)

The isotropic distribution (point in Fig. 2) is given by 

1

2

4

9
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9
3 5f x x x� � � � � � �� �� � / .  (41)

Although looking different, this function is equivalent to 
f x� � �1 which is commonly associated with isotropic dis-

tribution, as it leads to the same values of Voigt average 
elastic constants (Fig. 3).

The a priori bounds of the Voigt average elastic con-
stants can be obtained knowing the permissible range of f2,4 
variations.

VOIGT AVERAGE ELASTIC CONSTANTS OF  
A MIXTURE OF OLIVINE WITH AN ISOTROPIC 
MATERIAL: CALCULATION EXAMPLE 

To illustrate the above derivations, different possibilities 
of Voigt averaging are considered below for a mixture of 
olivine (20%) with an isotropic material, with the following 
assumptions (Vinnik et al., 2014): the stiffness tensor com-
ponents (1011 Pa) of olivine are according to Clark (1966) 
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 (42)

the isotropic material has the same density as olivine, and 
the P and S velocities are 8.1 and 4.5 km/s. The stiffness 
tensor of the mixture is expressed via the respective tensors 
of the constituents: 

c c cmix isotropic olivine� �� � �1 � � ,   (43)

Fig. 2. Domain of permitted (f2, f4) variations. Bold point marks the 
distribution (0,0) equivalent to the isotropic case.

Fig. 3. Any distribution function is equivalent to a sum of two delta 
functions.
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where α = 0.2. If the distribution function does not depend 
on angles, the P and S velocities are 8.56 and 4.98 km/s in 
olivine and 8.19 and 4.60 km/s in the mixture, respectively.

Vinnik et al. (2014) considered a distribution function 
depending on θ between the symmetry axis of the average 
medium and lattice plane 1: 

1

2 1

0

0

f �
� �

�
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�� �
�

�

cos
,  (44)

where θ = 30° and Θ(x) is the Heaviside step function, i.e., 
orientation 1 is assumed to be evenly distributed over a 30°  
cone, with the distribution parameters f2 = 0.81 and f4 = 0.45.

Fig. 4. Variations of vP, vS, dvP/vP, dvS/vS. Bold points mark isotorpic averaging (0,0) and averaging (0.81, 0.45) used by Vinnik et al. (2014). The 
pattern in the bottom right panel shows a set of averaging versions described by (44).
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For clarity, seismology commonly deals with some com-
binations of the stiffness tensor components of transversely 
isotropic media, rather than with the components them-
selves. These combinations may be average velocities of 
quasi-compressional and quasi-shear waves, their variations 
(in percent), and the parameter η that refers to the shape of 
the velocity indicatrix 
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where c c c66 11 12

1

2
� �� � . In the study of Vinnik et al. 

(2014), they were vP = 8.26 km/s, vS = 4.57 km/s, dvP/
vP = 3.5%, dvS/vS = 1.8%, and η = 10.5.

The patterns of Figure 4 show the behavior of these pa-
rameters in the same model at an arbitrary distribution func-
tion depending on one angle. The vp and vs curves fit well 
the relationship vP + 2.085 vS – 17.784 = 0. The dvP/vP, dvS/
vS and η curves are straight lines, which is evident directly 
from (45) for η; for the velocity variations, it follows from 

dv
v
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,

,

, ,
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11 66 33 44

11 66 33 44

�
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 (46)

and from the linear dependence of c11,33,44,66 on f2 and f4.

CONCLUSIONS

Voigt averaging, with an unknown distribution function, 
was previously assumed to provide much flexibility in ma-
nipulations with the parameters of the average medium. 
However, this is not the case actually. The averaging uses 
only a few lower moments of the distribution function in-
stead of the function as a whole, which are significant for the 
medium parameters described by finite-rank tensors. The 
small number of these moments in physically interesting 
cases offers a basically new opportunity of fitting all possi-
ble patterns of the orientation distribution instead of guess-
ing how it might be. 

The lower moments of the distribution function satisfy the 
probability inequalities and can vary within a limited domain, 
with its bounds constrained by Voigt average parameters.

If the Voigt average elastic constants are controlled by 
few moments (as in the case of a transversely isotropic me-
dium with transversely isotropic constituents), the values of 

each constant are bracketed within a certain range, and not 
all combinations are permitted. The Voigt average parame-
ters are interrelated: if some of them are locked, the others 
are predetermined.

Thus, the reported results place more rigorous constraints 
on the distribution of the components of a microheteroge-
neous medium according to crystallographic directions.
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