УДК 536.4

Новые методы исследования скорости испарения жидко-капельных аэрозолей

В.А. Архипов, С.А. Басалаев, Н.Н. Золоторев, К.Г. Перфильева, А.С. Усанина*

Научно-исследовательский институт прикладной математики и механики Национального исследовательского Томского государственного университета 634050, г. Томск, пр. Ленина, 36

Поступила в редакцию 20.01.2021 г.

Предложен новый метод определения скорости испарения одиночной капли при нагреве лучистым тепловым потоком заданной интенсивности. Разработаны новый способ и экспериментальная установка для исследования динамики испарения кластера монодисперсных капель жидкости при гравитационном осаждении в высокотемпературной газовой среде. С использованием предложенных методов проведены экспериментальные исследования закономерностей испарения одиночной капли и кластера капель жидкости. Проанализировано влияние нагрева лучистым и конвективным тепловым потоком на динамику испарения одиночной неподвижной капли. Обнаружено влияние показателя поглощения жидкости на скорость испарения одиночной капли при лучистом нагреве. Изучены особенности испарения кластера капель, движущихся в высокотемпературной газовой среде. Показано, что скорость испарения кластера капель зависит от количества и начальной концентрации капель в кластере.

Ключевые слова: одиночная капля, кластер капель, лучистый тепловой поток, конвективный тепловой поток, высокотемпературная газовая среда, скорость испарения, экспериментальное исследование; single drop, cluster of drops, radiant heat flux, convective heat flux, high-temperature gaseous medium, evaporation rate, experimental study.

Введение

Исследование закономерностей испарения жидко-капельных аэрозолей имеет практическое значение при проектировании энергетических устройств, оптимизации технологий пожаротушения, в вопросах экологии и в ряде других прикладных задач [1, 2]. В настоящее время большая часть работ по этой тематике посвящена исследованию процесса испарения одиночных капель [3–8]. Основной объем экспериментальных результатов получен при нагреве капель кондуктивным, конвективным и комбинированным радиационно-конвективным тепловыми потоками [2, 6, 8]. Испарение капель при нагреве лучистым тепловым потоком пока еще мало изучено.

В большинстве практических приложений (в частности, анализ эффективности авиационного пожаротушения тонкораспыленной водой [9]) реализуется процесс испарения кластера капель. Среди работ, посвященных экспериментальному исследованию испарения кластера капель жидкости, можно отметить [2, 10, 11]. В частности, в [11] рассмотрены закономерности движения нескольких последовательно падающих капель воды в высокотемпературной среде.

Цель настоящей работы – развитие новых методов исследования закономерностей испарения жидко-капельного аэрозоля, представляющих обобщение существующих способов определения скорости испарения капель [2, 6]. В статье представлены результаты экспериментального исследования скорости испарения одиночной капли и кластера капель жидкости с целью оценки адекватности и уточнения существующих моделей испарения жидко-капельных частиц. Первая методика исследования динамики испарения одиночной капли включает визуализацию левитирующей капли в акустическом поле при ее нагреве лучистым тепловым потоком, а вторая - визуализацию висячей капли при ее нагреве и обдуве конвективным тепловым потоком. Методика определения скорости испарения кластера капель жидкости включает оценку изменения размера капель при их прохождении через вертикально расположенный полый цилиндрический нагреватель.

Методики экспериментального исследования испарения одиночной капли

Исследования скорости испарения одиночной капли при нагреве лучистым тепловым потоком

© Архипов В.А., Басалаев С.А., Золоторев Н.Н. и др., 2021

^{*} Владимир Афанасьевич Архипов (leva@niipmm. tsu.ru); Сергей Александрович Басалаев (tarm@niipmm. tsu.ru); Николай Николаевич Золоторев (nikzolotorev@ mail.ru); Ксения Григорьевна Перфильева (k.g.perfiljeva@ yandex.ru); Анна Сергеевна Усанина (usaninaanna@mail.ru).

проводились на установке [12, 13], схема которой приведена на рис. 1, а. Установка состоит из ультразвукового левитатора, системы визуализации и системы нагрева капли внешним тепловым потоком. Ультразвуковой левитатор содержит пьезоэлектрический преобразователь 1, установленный на пластине 2 и соединенный с усилителем мощности 3, генератором колебаний 4 и источником питания 5. В резонаторе формируется акустическое поле между пластиной 2 и отражателем 6, закрепленным на микрометрическом винте 7 для регулирования расстояния. С помощью капилляра в резонатор помещается капля жидкости. Устойчивое зависание капли в акустическом поле обеспечивается регулированием усилителя мощности 3 и перемещением микрометрического винта 7. После удаления капли на ее место устанавливается перемещаемый датчик теплового потока типа Ophir Optonics-FL500A и при включен-

Рис. 1. Схема экспериментальной установки для исследования динамики испарения одиночной капли при нагреве лучистым (*a*) и конвективным (*б*) тепловыми потоками

ной ксеноновой лампе 8 типа ДКсР-3000М, помещенной в фокусе параболического рефлектора 9, с заданной мощностью излучения регистрируется величина теплового потока q в указанной точке резонатора (плотность лучистого теплового потока варьировалась в диапазоне $q = (0,25 \div 0,85)$ Вт/см²). После удаления датчика теплового потока снова создается акустическое поле с помощью генератора 4 и размещается капля 10 исследуемой жидкости заданной массы. Визуализация процесса испарения капли проводится в двух ракурсах видеокамерами 11 типа Panasonic HDC-SD60.

Скорость испарения капли вычислялась по формуле

$$W = \rho_p \frac{dR(t)}{dt}, \qquad (1)$$

где ρ_p — плотность капли жидкости; R(t) — радиус капли в текущий момент времени.

Экспериментальное исследование динамики испарения одиночной капли жидкости в условиях конвективного теплового потока проведено на установке, схема которой представлена на рис. 1, б. Для создания равномерного конвективного теплового потока использовалось устройство, которое состоит из лопастного вентилятора 1, диафрагмы 2 и трубчатого электрического нагревателя 3, расположенного внутри керамической трубы 4. Вентилятор 1 и керамическая труба 4 соединены конфузором 5, что позволяет увеличить скорость теплового потока. После создания потока равномерно прогретого воздуха в выходном сечении керамической трубы 4 поток перекрывается термостойкой пластиной. После размещения капли жидкости 6 в петле хромель-копелевой термопары 7 термостойкая пластина удаляется. Сведения об изменении температуры капли в процессе испарения передаются с термопары 7 через усилитель 8 на компьютер 9. Визуализация процесса испарения капли проводится видеокамерой 10 типа процесса Раnasonic HDC-SD60. Скорость конвективного теплового потока в выходном сечении керамической трубы 4 измерялась трубкой Пито с погрешностью 3%.

Радиус эквивалентной сферической капли с учетом ее деформации в процессе испарения определялся по результатам видеосъемки с погрешностью ~ 4% и рассчитывался по формуле

$$R(t_i) = 0.5\sqrt[3]{d^2(t_i)h(t_i)},$$

где $d(t_i)$, $h(t_i)$ — диаметр миделева сечения и высота деформированной капли, измеренные по видеокадрам процесса.

Плотность конвективного теплового потока рассчитывалась по формуле

$$q = \alpha (T - T_p),$$

где а — коэффициент теплоотдачи; T и T_p — температура воздуха, обдувающего каплю, и температура капли соответственно. Подставив выражение для коэффициента теплоотдачи а = $\lambda Nu/2R(t)$ (где λ — коэффициент теплопроводности воздуха; $Nu = 2 + 0,16 \text{Re}^{2/3}$ — число Нуссельта; $\text{Re} = 2\rho u R(t)/\mu$ —

Новые методы исследования скорости испарения жидко-капельных аэрозолей

441

число Рейнольдса; ρ — плотность воздуха; μ — коэффициент динамической вязкости воздуха; u скорость теплового потока воздуха) в формулу (1), получим

$$q = \frac{\lambda}{2R} \left[2 + 0.16 \left(\frac{2\rho u R}{\mu} \right)^{2/3} \right] (T - T_p)$$

Экспериментальные исследования испарения одиночной капли дистиллированной воды радиусом $R = (0,4 \div 1,75)$ мм проведены в диапазоне температур $T = (300 \div 534)$ К и скорости $u = (0 \div 1,7)$ м/с газовой среды. Плотность теплового потока q в экспериментах с одиночной каплей жидкости варьировалась в диапазоне $(0,25 \div 1,5)$ Вт/см².

Методика экспериментального исследования испарения кластера капель

Для исследования динамики испарения кластера капель жидкости, движущегося в высокотемпературной газовой среде, разработана экспериментальная установка [14, 15], схема которой представлена на рис. 2. Установка состоит из системы подачи и нагрева капель, а также системы визуализации.

Рис. 2. Схема экспериментальной установки для исследования скорости испарения кластера монодисперсных капель

Система нагрева капель выполнена из керамической трубы 1 с проволочными нихромовыми спиралями 2, установленными на ее внутренней поверхности и соединенными с источником напряжения 3. Система подачи капель включает размещенную над верхним срезом трубы 1 мерную емкость 4 с равномерно расположенными капиллярами 5 одинакового диаметра, заполненную исследуемой жидкостью 6. Мерная емкость 4 соединена с воздушным микрокомпрессором 7 через электропневмоклапан 8, который управляется низкочастотным генератором напряжения 9. Система визуализации состоит из двух видеокамер 10 типа Panasonic HDC-SD60, расположенных на входе и на выходе трубы 1. Температура газовой среды контролируется съемными термопарами 12, сигналы с которых поступают через усилитель 13 на осциллограф 14.

Перед началом экспериментов внутренняя полость трубы 1 предварительно прогревалась до заданной температуры. Мерная емкость 4 наполнялась исследуемой жидкостью 6 заданной массы m_0 . После включения воздушного микрокомпрессора 7 импульсное напряжение от генератора 9 подавалось на электропневмоклапан 8 для создания импульсов давления в мерной емкости 4, которые приводят к одновременному отрыву капель от срезов капилляров 5. В результате создавался компактный кластер монодисперсных капель 15. После истечения всей жидкости 6 из мерной емкости 4 определялась масса жидкости *m*_f, прошедшая через нагреватель и поступившая в приемную емкость 11. Начальный радиус капель R_0 фиксировался видеокамерой 10, установленной на входе в нагреватель.

Предположим, что за время эксперимента из мерной емкости через нагреватель прошло N_0 капель суммарной массой $m_0 = 4N_0\rho_p\pi R_0^3/3$, а в приемную емкость поступило N_f капель массой $m_f = 4N_f\rho_p\pi R_f^3/3$ (R_f — радиус капли после прохождения через нагреватель). При одинаковом количестве капель в мерной и приемной емкости ($N_0 = N_f$) изменение радиуса капли рассчитывается по формуле

$$\Delta R = R_0 - R_f = R_0 \left(1 - \sqrt[3]{m_f / m_0} \right).$$
 (2)

Из уравнения гравитационного осаждения одиночной капли можно получить формулу для определения времени нагрева [15]:

$$\Delta t = 1,466\sqrt{L/g},\tag{3}$$

где L – высота нагревателя; g – ускорение свободного падения.

Подставив (2) и (3) в (1), получим формулу для вычисления скорости испарения каждой из капель в кластере

$$W = 0.682 \rho_p R_0 \sqrt{g/L} \left(1 - \sqrt[3]{m_f/m_0} \right)$$

Экспериментальные исследования динамики испарения кластера капель проведены для капель дистиллированной воды радиусом R = 0,77 мм в диапазоне температур внешней среды $T = (650 \div 800)$ К.

Архипов В.А., Басалаев С.А., Золоторев Н.Н. и др.

Результаты экспериментов и их анализ

Анализ результатов экспериментов показал, что динамика испарения одиночной капли качественно не зависит от типа создаваемого теплового потока. В условиях как лучистого, так и конвективного теплового потока скорость испарения одиночной капли возрастает с увеличением плотности теплового потока. На рис. 3, *а* приведены экспериментальные зависимости скорости испарения одиночной капли дистиллированной воды от плотности теплового потока.

Из рис. 3, *а* следует, что скорость испарения капли линейно растет с увеличением плотности теплового потока, а время полного испарения капли уменьшается. Обнаружено, что при одинаковом значении плотности теплового потока скорость испарения капли при конвективном нагреве больше, чем при нагреве лучистым тепловым потоком (разница составляет ~ 75%).

Определено, что на интенсивность испарения капли при лучистом нагреве влияет показатель поглощения а жидкости. Поэтому были проведены дополнительные экспериментальные исследования по определению скорости испарения одиночной капли в условиях лучистого теплового потока в зависимости от показателя поглощения а и концентрации красителя $C = (0 \div 0,3)$ % в жидкости. Суть эксперимента заключается в следующем. Исследуемая жидкость с заданным количеством красителя помещается в специальную кювету для оптических измерений. С помощью ксеноновой лампы типа ДКсР-3000М создается лучистый тепловой поток, направленный на кювету. На выходе из кюветы интенсивность лучистого теплового потока измеряется датчиком типа Ophir Optronics-FL500A. Выражение для показателя поглощения а находится из закона Бугера:

$$a = \frac{1}{l} \ln \left(\frac{I_c}{I_l} \right),$$

где l — ширина кюветы с жидкостью, содержащей краситель; I_c — интенсивность света, прошедшего через пустую кювету; I_l — интенсивность света, прошедшего слой жидкости, содержащей краситель.

Результаты экспериментов по исследованию влияния показателя поглощения на динамику испарения одиночной капли в условиях лучистого потока приведены в таблице и на рис. 3, б. Из них следует, что по мере увеличения концентрации красителя в жидкости (более темная жидкость) и показателя поглощения скорость испарения капли возрастает. Обнаружено, что с увеличением показателя поглощения большая часть излученного потока идет на нагрев среды (в том числе и на испарение).

Таким образом, в условиях лучистого нагрева показатель поглощения является одним из важнейших параметров, определяющих процесс испарения. Сравнение полученных данных с результатами аналогичных работ [4, 5] в пересекающихся диапазонах

Рис. 3. Зависимость скорости испарения одиночной капли дистиллированной воды: *a* — от плотности теплового потока (1 — конвективный, 2 — лучистый потоки); *б* — от показателя поглощения

Зависимость скорости испарения одиночной капли от показателя поглощения и концентрации красителя в жилкости

и концептрации красителя в жидкости		
<i>W</i> · 10 ³ , кг∕(м ² · с)	<i>C</i> , %	<i>a</i> , cm ⁻¹
0,414	0	0,483
0,488	0,005	0,765
0,515	0,010	1,045
0,585	0,050	2,988
0,615	0,100	4,237
0,645	0,200	4,683
0,661	0,300	4,886

параметров исследуемого процесса показало, что данные хорошо согласуются.

Результаты экспериментальных исследований процесса испарения кластера монодисперсных капель дистиллированной воды в высокотемпературной среде представлены на рис. 4.

Новые методы исследования скорости испарения жидко-капельных аэрозолей

Рис. 4. Зависимость скорости испарения кластера капель: a — от температуры окружающей среды для N = 1 (1), 2 (2), 4 (3), 9 (4); δ — от безразмерного параметра kпри температуре окружающей среды T = 650 (1), 725 (2), 800 К (3) (точки — эксперимент; сплошные линии аппроксимационные кривые)

Из рис. 4 следует, что скорость испарения кластера капель увеличивается при повышении температуры окружающей среды. Полученные результаты для скорости испарения одиночной капли (кривая 1 на рис. 4, *a*) согласуются с литературными данными [16].

Экспериментально обнаружено, что скорость испарения кластера монодисперсных капель жидкости уменьшается по мере увеличения количества капель в кластере и их объемной концентрации. Снижение скорости испарения капель с увеличением их концентрации можно объяснить увеличением концентрации водяных паров в кластере.

Объемная концентрация капель C_V в кластере характеризуется безразмерным параметром

$$k = L/2R_0,\tag{4}$$

где L — среднее расстояние между центрами капель в кластере. В случае большого количества капель в кластере параметр k связан с их объемной концентрацией выражением $k = \sqrt[3]{\pi/6 \cdot C_V}$. Приведенные на рис. 4, б значения безразмерного параметра k соответствуют следующим количествам капель в кластере: k = 11,7 (N = 2); k = 9,4 (N = 4); k = 7,9 (N = 9). Из рис. 4, б следует, что скорость испарения кластера капель монотонно возрастает с увеличением параметра k и, следовательно, с уменьшением количества капель в кластере. Полученные данные хорошо согласуются с результатами работы [2].

Заключение

Предложены методики экспериментального исследования динамики испарения одиночной капли жидкости в условиях лучистого и конвективного тепловых потоков. Разработан метод определения скорости испарения кластера монодисперсных капель в высокотемпературной газовой среде, позволяющий повысить точность определения скорости испарения кластера капель.

В результате экспериментального исследования обнаружено, что механизм нагрева (лучистый или конвективный поток) капли влияет на интенсивность ее испарения; при фиксированном значении плотности теплового потока испарение капли происходит интенсивнее в конвективном потоке. Показано, что одним из основных параметров, определяющих динамику испарения капли, является показатель поглощения жидкости а. Для условий проведенных экспериментов скорость испарения одиночной капли возрастает с 0,414 до 0,661 кг/(m^2/c) с увеличением *a* с 0,483 до 4,886 см⁻¹. Доказано, что скорость испарения кластера монодисперсных капель зависит от количества и начальной объемной концентрации капель в кластере. По мере увеличения количества капель и их концентрации скорость испарения капель снижается.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ в рамках государственного задания № 0721-2020-0036.

- Терехов В.И., Пахомов М.А. Тепломассоперенос и гидродинамика в газокапельных потоках. Новосибирск: Изд-во НГТУ, 2009. 284 с.
- Высокоморная О.В., Кузнецов Г.В., Стрижак П.А. Испарение и трансформация капель и больших массивов жидкости при движении через высокотемпературные газы. Новосибирск: Изд-во СО РАН, 2016. 302 с.
- 3. Гейнц Ю.Э., Землянов А.А. Взрывное вскипание крупных водных капель под действием интенсивного лазерного излучения // Оптика атмосф. и океана. 1993. Т. 6, № 11. С. 1426–1435.
- Peiyong Ni. A fuel droplet vaporization model in a hot air stream // Appl. Math. Model. 2010. V. 34. P. 2370– 2376.
- 5. Высокоморная О.В., Кузнецов Г.В., Стрижак П.А. Испарение капель воды в высокотемпературной газовой среде // ИФЖ. 2016. Т. 89, № 1. С. 133–142.
- 6. *Терехов В.И., Шишкин Н.Е., Ли Х.-К.* Влияние поверхностно-активного вещества на испарение водяных капель // Современная наука: идеи, исследования, результаты, технологии. 2011. № 2. С. 215–219.
- 7. Borodulin V.Yu., Letushko V.N., Nizovtsev M.I., Sterlyagov A.N. Determination of parameters of heat and

mass transfer in evaporating drops // Int. J. Heat Mass Transfer. 2017. V. 109. P. 609–618.

- 8. Кузнецов Г.В., Стрижак П.А. Испарение капель воды при движении через высокотемпературные газы // ИФЖ. 2018. Т. 91, № 1. С. 104–111.
- 9. Ишматов А.Н., Ворожцов Б.И. Метод исследования тонкодисперсного распыления жидкостей // Оптика атмосф. и океана. 2012. Т. 25, № 7. С. 653–656; *Ishmatov A.N., Vorozhtsov B.I.* A method for the study of fine liquid atomization // Atmos. Ocean. Opt. 2013. V. 26, N 1. P. 74–78.
- Копылов Н.П., Карпов В.Н., Кузнецов А.Е., Федоткин Д.В., Хасанов И.Р., Сушкина Е.Ю. Особенности тушения лесных пожаров с применением авиации // Вестн. Том. гос. ун-та. Математика и механика. 2019. № 59. С. 79–86.
- Volkov R.S., Kuznetsov G.V., Legros J.C., Strizhak P.A. Experimental investigation of consecutive water droplets falling down through high-temperature gas zone // Int. J. Heat Mass Transfer. 2016. V. 95. P. 184–197.
- 12. Устройство для определения скорости испарения капли: Пат. 2719264. Россия, МПК G01N 25/02, G01N

25/12, G01N 21/29. Архипов В.А., Маслов Е.А., Коноваленко А.И., Золоторев Н.Н., Кузнецов В.Т. НИ Том. гос. ун-т. № 2019131997; Заявл. 09.10.2019. Опубл. 17.04.2020. Бюл. № 11.

- 13. Архипов В.А., Басалаев С.А., Золоторев Н.Н., Перфильева К.Г., Усанина А.С. Особенности испарения капли при лучистом и конвективном нагреве // Письма в ЖТФ. 2020. Т. 46, вып. 8. С. 25–28.
- 14. Способ определения скорости испарения группы капель: Пат. 2724140. Россия, МПК G01N 25/12. Архипов В.А., Басалаев С.А., Коноваленко А.И., Золоторев Н.Н., Перфильева К.Г., Усанина А.С. НИ Том. гос. ун-т. № 2019139349; Заявл. 02.12.2019. Опубл. 22.06.2020. Бюл. № 18.
- 15. Архипов В.А., Басалаев С.А., Коноваленко А.И., Перфильева К.Г. Испарение кластера капель при движении в высокотемпературной газовой среде // Письма в ЖТФ. 2020. Т. 46, вып. 12. С. 40–42.
- 16. Войтков И.С., Волков Р.С., Кузнецов Г.В., Стрижак П.А. Высокотемпературное испарение капель воды в газовой среде // ЖТФ. 2017. Т. 87, вып. 12. С. 1911–1914.

V.A. Arkhipov, S.A. Basalaev, N.N. Zolotorev, K.G. Perfilieva, A.S. Usanina. New methods for studying the evaporation rate of liquid-drop aerosols.

Results of experimental studies of the common factors of evaporation of a single drop and a cluster of liquid drops are presented. New method for determining the evaporation rate of a single drop at radiant flux heating of a given intensity is suggested. The effect of radiant and convective flux heating on the evaporation dynamics of a single motionless drop is analyzed. The effect of absorption coefficient of the liquid on the evaporation rate of the single drop at radiant heating is found. A new method and experimental setup are developed for studying the evaporation dynamics of a cluster of monodisperse liquid drops during their gravitational settling in a high-temperature gaseous medium. Specific features of the evaporation of clusters moving in a hightemperature gaseous medium are studied. It is shown that the evaporation rate of a cluster depends on the number and initial concentration of drops in it.